本题要求编写程序,计算两个有理数的和。
输入格式:
输入在一行中按照a1/b1 a2/b2
的格式给出两个分数形式的有理数,其中分子和分母全是整形范围内的正整数。
输出格式:
在一行中按照a/b
的格式输出两个有理数的和。注意必须是该有理数的最简分数形式,若分母为1,则只输出分子。
输入样例1:
1/3 1/6
结尾无空行
输出样例1:
1/2
结尾无空行
输入样例2:
4/3 2/3
输出样例2:
2
分析:先通分,再相加,再把新的分数化成最简分数形式即可。这道题核心就是求最大公约数算法。
代码如下:
#include<stdio.h>
int f1(int n, int m)//求最大公约数
{
int N = n > m ? n : m;
int M = n < m ? n : m;
if (N % M == 0)
{
return M;
}
int r = 0;
while (M)
{
r = N % M;
N = M;
M = r;
}
return N;
}
int f2(int n, int m)//求最小公倍数
{
int Max = f1(n, m);
return n / Max * m / Max * Max;
}
int main()
{
int fenzi1=0, fenmu1=0, fenzi2=0, fenmu2=0;
scanf("%d/%d %d/%d", &fenzi1, &fenmu1, &fenzi2, &fenmu2);
int min_public = f2(fenmu1, fenmu2);
int k1 = min_public / fenmu1;
int k2 = min_public / fenmu2;
int fenzi3 = k1 * fenzi1 + k2 * fenzi2;//通分后的分子
int fenmu3 = min_public;//通分后的分母
int max2 = f1(fenzi3, fenmu3);
int n = fenzi3 / max2;//化简后的分子
int m = fenmu3 / max2;//化简后分母
if (m == 1)
{
printf("%d\n", n);
}
else
{
printf("%d/%d\n", fenzi3 / max2, fenmu3 / max2);
}
return 0;
}
提交结果:
测试结果: