PTA 有理数加法 (15 分)

本题要求编写程序,计算两个有理数的和。

输入格式:

输入在一行中按照a1/b1 a2/b2的格式给出两个分数形式的有理数,其中分子和分母全是整形范围内的正整数。

输出格式:

在一行中按照a/b的格式输出两个有理数的和。注意必须是该有理数的最简分数形式,若分母为1,则只输出分子。

输入样例1:

1/3 1/6

结尾无空行

输出样例1:

1/2

结尾无空行

输入样例2:

4/3 2/3

输出样例2:

2

分析:先通分,再相加,再把新的分数化成最简分数形式即可。这道题核心就是求最大公约数算法。 

代码如下:

#include<stdio.h>
int f1(int n, int m)//求最大公约数
{
    int N = n > m ? n : m;
    int M = n < m ? n : m;
    if (N % M == 0)
    {
        return M;
    }
    int r = 0;
    while (M)
    {
        r = N % M;
        N = M;
        M = r;
    }
    return N;
}

int f2(int n, int m)//求最小公倍数
{
    int Max = f1(n, m);
    return n / Max * m / Max * Max;
}
int main()
{
    int fenzi1=0, fenmu1=0, fenzi2=0, fenmu2=0;
    scanf("%d/%d %d/%d", &fenzi1, &fenmu1, &fenzi2, &fenmu2);
    int min_public = f2(fenmu1, fenmu2);
    int k1 = min_public / fenmu1;
    int k2 = min_public / fenmu2;
    int fenzi3 = k1 * fenzi1 + k2 * fenzi2;//通分后的分子
    int fenmu3 = min_public;//通分后的分母
    int max2 = f1(fenzi3, fenmu3);
    int n = fenzi3 / max2;//化简后的分子
    int m = fenmu3 / max2;//化简后分母
    if (m == 1)
    {
        printf("%d\n", n);
    }
    else
    {
        printf("%d/%d\n", fenzi3 / max2, fenmu3 / max2);
    }
    return 0;
}

提交结果:

 

 测试结果:

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值