最短路径与最小生成树:Dijkstra、Prim与Kruskal算法详解

在图论中,最短路径和最小生成树问题是两个重要的课题。本文将介绍三种经典的算法:Dijkstra、Prim和Kruskal,并对它们进行对比分析。我们将讨论这些算法解决的问题、各自的优劣性以及它们之间的异同点,并提供完整的代码示例。

Dijkstra算法

Dijkstra算法用于解决单源最短路径问题,即从图中的一个顶点出发,找到到其他所有顶点的最短路径。

Dijkstra算法的工作原理:
  1. 初始化:将源点到自己的距离设为0,其他所有顶点到源点的距离设为无穷大。
  2. 优先队列:使用一个优先队列存储顶点,按照当前最短路径距离进行排序。
  3. 松弛操作:从优先队列中取出距离最小的顶点,更新与其相邻的顶点的最短路径距离。
  4. 重复:重复上述步骤,直到优先队列为空。
Java代码示例:
import java.util.*;

public class Dijkstra {
   
    public static int[] dijkstra(Graph graph, int source) {
   
        int V = graph.size();
        int[] distTo = new int[V];
        boolean[] visited = new boolean[V];
        Arrays.fill(distTo, Integer.MAX_VALUE);
        distTo[source] = 0;

        PriorityQueue<Node> pq = new PriorityQueue<>();
        pq.add(new Node(source, 0));

        while (!pq.isEmpty()) {
   
            Node node = pq.poll();
            int v = node.vertex;

            if (visited[v]) continue;
            visited[v] = true;

            for (Graph.Edge edge : graph.getEdges(v)) {
   
                int w = edge.to;
                if (visited[w]) continue;
                relax(edge, v, w, distTo, pq);
            }
        }
        return distTo;
    }

    private static void relax(Graph.Edge edge, int v, int w, int[] distTo, PriorityQueue<Node> pq) {
   
        if (distTo[v] + edge.weight < distTo[w]) {
   
            distTo[w] = distTo[v] + edge.weight;
            pq.add(new Node(w, distTo[w]));
        }
    }

    static class Node implements Comparable<Node> {
   
        int vertex;
        int distance;
        Node(int vertex, int distance) {
   
            this.vertex = vertex;
            this.distance = distance;
        }
        @Override
        public int compareTo(Node other) {
   
            return Integer.compare(this.distance, other.distance);
        }
    }

    public static void main(String[] args) {
   
        Graph graph = new Graph(5);
        graph.addEdge(0, 1, 10);
        graph.addEdge(0, 3, 30);
        graph.addEdge(0, 4, 100);
        graph.addEdge(1, 2, 50);
        graph.addEdge(2, 4, 10);
        graph.</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

poison_Program

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值