镜面高光去除代码,DHAN-SHR的推理代码,自己写的

前言

这篇博客主要是解决DHAN-SHR网络没有发布推理代码的问题(新手写推理代码可能有问题),所以本文给出了DHAN-SHR网络的推理代码,希望可以帮助到大家。

import gc
import os

import numpy as np
import torchvision.transforms.functional as F
import torch
import warnings
from torchvision import transforms
from torchvision.utils import save_image
from PIL import Image
from models import Model
from utils import load_checkpoint
from config import Config
from tqdm import tqdm
from accelerate import Accelerator

warnings.filterwarnings('ignore')
# Load configuration
opt = Config('config.yml')

# Set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Load model
model = Model().to(device)
load_checkpoint(model, opt.TESTING.WEIGHT)
model.eval()

# Example usage
if __name__ == '__main__':

    accelerator = Accelerator()


    images_path = r"images"
    images = os.listdir(images_path)
    for image in tqdm(images):
        input_image_path = os.path.join(images_path, image)
        output_image_path = os.path.join("result", image)  # Path to save the processed image
        image = Image.open(input_image_path).convert('RGB')
        PS_W, PS_H = image.size
        image = F.to_tensor(image)

        model, image = accelerator.prepare(model, image)

        image = image.unsqueeze(0).to(device)
        with torch.no_grad():
            result = model(image).clamp(0, 1)

        # Post-process result if needed (optional, depends on the model)
        result = result.squeeze(0).cpu()
        # 将 PIL 图像转换为 NumPy 数组
        result_np = np.array(result)

        # result = result.mul(255).clamp(0, 255).byte()
        result = transforms.ToPILImage()(result)





        # Save the result
        result.save(output_image_path)
        del image
        del result
        gc.collect()  # Explicitly collect garbage
        torch.cuda.empty_cache()


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值