QLoRA: Efficient Finetuning of Quantized LLMs

一、技术背景与问题

1.1 核心挑战

微调是提升大语言模型性能的关键手段,但其计算成本随模型规模呈指数级增长。以 LLaMA 65B 模型为例,16 位全参数微调需超过 780GB 的 GPU 内存,这一需求远超普通硬件(如消费级 48GB 显存 GPU)的承载能力。传统微调方法如 LoRA(Low-Rank Adaptation)虽通过低秩适配器减少计算量,但存在以下局限:

  • 性能限制:默认超参数下无法达到 16 位全参微调性能,需在所有 Transformer 层应用适配器并调整数量(如 LLaMA 65B 需数百个适配器)才能接近全精度。
  • 内存瓶颈:仅部分减少内存占用,处理 65B 模型仍需数百 GB 显存,无法在单卡环境下有效应用。

二、QLoRA 核心技术思路

2.1 技术架构

QLoRA 通过以下组件实现高效微调(图 1):

  1. 4 位量化模型:将预训练模型参数从 16 位量化为 4 位(NormalFloat-4,NF4),冻结主体参数以降低内存占用。
  2. 可学习
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱花的浪漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值