樱花的浪漫
梦想还是要有的,更要成为一名不懈追求梦想的人
展开
-
基于YOLOv5的细胞检测实战
如下图所示,我们有一个医学细胞数据集,需要从数据集中检测出三种不同的细胞。标签中已经标注了细胞的类别和位置。我们也可以看到,三种细胞有着不同的形态和颜色,同时数据集的标签也存在没有标注到的细胞。原创 2023-02-25 16:36:12 · 3147 阅读 · 0 评论 -
Unet医学细胞分割实战
如图所示,数据集原始标注为单个细胞,需要运行preprocess_dsb2018.py将标注整合到一张图片中。原创 2022-09-04 17:13:22 · 2988 阅读 · 5 评论 -
Medical transformer源码解读
数据预处理部分比较常规,进行了一下裁剪和色彩增强操作,比较简单,不在多说。另外,官方github上提供了数据。原创 2022-11-06 15:47:13 · 1297 阅读 · 0 评论 -
论文精读:Medical Transformer: Gated Axial-Attention forMedical Image Segmentation
论文地址:https://arxiv.org/pdf/2102.10662.pdf 代码地址:GitHub - jeya-maria-jose/Medical-Transformer: Official Pytorch Code for "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation" - MICCAI 2021 由于卷积体系结构中存在的固有的归纳偏差,它们缺乏对图像中的随机依赖性的理解。最近原创 2022-11-02 11:19:52 · 1050 阅读 · 0 评论 -
医学心脏数据集分割建模实战
进行申请,源码也是由斯坦福公布的数据集为心脏跳动的视频,我们可以根据视频中的图像,对每一帧的图像进行图像分割,根据心脏跳动时心房或者心室面积的变化,协助诊断。原创 2022-10-01 14:55:44 · 1932 阅读 · 0 评论 -
基于视频流⽔线的Opencv缺陷检测项⽬
输入为视频数据,我们需要从视频中检测出缺陷,并对缺陷进行分类。原创 2023-02-23 18:05:13 · 2868 阅读 · 2 评论 -
基于Opencv的缺陷检测任务
任务需求:使用opencv检测出手套上的缺陷并且进行计数环境配置:pip install opencv-python。原创 2023-02-22 11:47:53 · 2123 阅读 · 0 评论 -
Semi-supervised(半监督)布料缺陷检测实战
对于常规的缺陷检测,常常需要我们准备好数据,使用分割或者检测的方法选择模型,进行训练。但是有一个问题。数据集使用的是一个经典的缺陷检测数据集,只使用其正常数据。labels目录下的txt文件注明了正常的图片和异常的图片。原创 2023-02-21 20:21:22 · 1675 阅读 · 6 评论 -
基于YOLOV5的钢材缺陷检测
数据集使用的是东北大学收集的一个钢材缺陷检测数据集,需要检测出钢材表面的6种划痕。同时,数据集格式是VOC格式,需要进行转化。原创 2023-02-12 21:03:08 · 8148 阅读 · 1 评论 -
害虫检测:Meta-learning for Few-Shot Insect PestDetection in Rice Crop
深度学习领域的最新进展有助于准确地预测和定位农业田间图像中的害虫。这种方法的缺点是需要对每个样本都有一个大的训练数据集,这是不可行的。由于有各种各样的害虫,为每个样本收集成千上万张训练图像是不切实际的。针对如何解决这一问题,本文提出了一种基于少样本的害虫检测元学习技术。在这项工作中,考虑对水稻作物的害虫进行实验。IP102作为支持进行元学习的数据集和害虫图像库被称为印度农业研究委员会-国家农业昆虫资源局(ICAR-NBAIR)被用来进行少样本学习。原创 2022-10-18 17:06:19 · 813 阅读 · 0 评论 -
Adaptive feature fusion pyramid network for multi-classes agriculturalpest detection
我们对AgriPest21数据集进行了大量的比较实验。我们的方法可以达到77.0%的准确率,明显优于其他最先进的方法,包括SSD、RetinaNet,FPN,DynamicR-CNN,CascadeR-CNN.原创 2022-07-29 16:17:12 · 672 阅读 · 5 评论 -
S-RPN: Sampling-balanced region proposal network for small crop pest detection
综上所述,我们的主要贡献如下。原创 2022-07-27 18:48:31 · 433 阅读 · 0 评论 -
2020 AF-RCNN: An anchor-free convolutional neural network for multi-categoriesagricultural pest det
农业害虫的频繁爆发导致了作物生产减少,并严重限制了农业生产。许多农业害虫对农业工人的农业害虫的准确识别带来了挑战。目前,传统的农业害虫检测方法由于效率和准确性较低,无法满足农业生产的需要。本文提出了一种无锚区域卷积神经网络(AF-RCNN),用于对24类害虫的精度识别和分类。首先,设计了一个特征融合模块来提取农业害虫,特别是小害虫的有效特征信息。然后,我们提出了一个无锚区域建议网络(AF-RPN),该网络基于融合特征图获得高质量的目标建议作为可能的害虫位置。最后,我们的无锚定区域卷积神经网络(AF-RCNN原创 2022-07-25 17:34:53 · 396 阅读 · 0 评论