通过大模型(LLM)的多模态辩论的恶意表情包识别

该研究提出一种结合大型语言模型(LLMs)的多模态辩论方法来识别恶意表情包,通过两个LLMs代表有害和无害立场进行辩论,生成理由。随后,使用小型模型进行判断,整合视觉和文本信息,提高预测准确性和解释性。实验表明,这种方法在Harm-C、Harm-P和FHM数据集上的表现优于其他基线模型,且生成的解释具有较高的质量和说服力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Towards Explainable Harmful Meme Detection through Multimodal Debate between Large Language Models

1.概论

        对于恶意表情包的识别,以往的研究方法没有能够深入表情包所隐含的复杂意义和文化背景,因此,他们往往不能充分解释某个表情包是有害的。这篇论文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱花的浪漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值