TELLER:可解释的、可控的、通用的虚假新闻检测框架

TELLER框架解决了深度学习方法在虚假新闻检测中的透明性、泛化能力和可控性问题。它通过认知系统将专家知识转化为逻辑谓词,用LLMs进行逻辑评估。决策系统则利用神经符号模型学习逻辑规则,实现透明的推理过程。在实验中,TELLER在可解释性、跨域适应性和可控性方面表现出优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱花的浪漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值