​因果引导的主动学习框架用于大规模语言模型去偏​——Causal-Guided Active Learning for Debiasing Large Language Models

论文地址:https://aclanthology.org/2024.acl-long.778.pdficon-default.png?t=O83Ahttps://aclanthology.org/2024.acl-long.778.pdf

1. 概述

        随着**大规模语言模型(LLMs)**的广泛应用,它们在自然语言处理(NLP)任务中的表现取得了显著进展。这些模型通过大规模的无监督预训练过程,能够有效地理解语言结构和进行复杂的推理任务。然而,生成式预训练过程不仅让模型学习到语言的深层结构,也使其不可避免地从数据集本身吸收并继承了数据中的偏见。例如,位置偏见(即

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱花的浪漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值