「深度学习」dropout 技术

本文介绍了正则化网络中的dropout技术,包括其工作原理、Inverteddropout的修正方法以及dropout在防止过拟合中的作用。同时探讨了其他正则化策略,如训练集扩充、earlystopping和L2正则化,及其优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、工作原理

1. 正则化网络

dropout 将遍历网络的每一层,并设置消除神经网络中节点的概率。

  1. 1. 每个节点保留/消除的概率为0.5:

  2. 2. 消除节点:

  3. 3. 得到一个规模更小的神经网络:

2. dropout 技术

最常用:反向随机失活 "Inverted dropout"

以三层网络 (l=3) 为例:

keep-prob = 0.8     #保留某个隐藏单元的概率
#生成随机矩阵,每个单元对应值为1的概率是0.8,用于决定第三层哪些元素应该归零
d3 = np.random.rand(a3.shape[0], a3.shape[1]) < keep-prob
#元素相乘,从第三层获取激活函数,过滤d3中所有等于0的元素
a3 = np.multiply(a3,d3)
a3 /= keep-prob   #dropout方法:修正,使得a3期望值不变

Inverted dropou

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值