matlab信号基本特性分析

一、实验目的

1、 学习 Matlab 编程的基本方法;掌握常用函数用法。
2、 了解不同信号的频域特性,理解时域特性与频域特性之间的关联性。
3、 掌握典型信号序列的时域和频域基本特性。
4、 熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理解。
5、 了解离散系统的时域/频域特性及其对输出信号的影响,掌握系统分析方法。

二、实验原理

三、实验内容

1.3.1 Matlab操作与使用
1)文件操作

预先在路径文件夹下创建文本文件data.txt。使用load从文件中读取数据。实验中文件路径报错,使用cd命令更改Matlab当前文件夹,成功打开data.txt文件。
使用命令>>save experiment.dat data -ascii,将刚刚读取的data存入experiment.dat文件中。打开文件夹,可以看到创建的experiment.dat文件。

在这里插入图片描述

2)矩阵运算
在这里插入图片描述

inv(A) 求矩阵的逆
A*A 矩阵乘法
A+A 矩阵加法
A‘ 矩阵转置
3)绘图
使用如下代码画出矩形序列

在这里插入图片描述
在这里插入图片描述

使用如下代码画出3D图形
在这里插入图片描述

在这里插入图片描述

4)图形界面实现
handle=helpdlg(‘hi’,‘test’)
在这里插入图片描述

1.3.2 理想采样信号序列的特性分析

在这里插入图片描述
在这里插入图片描述

采样频率减小到200Hz时已经出现了明显频谱“混淆”现象。因为采样频率太小,频谱在频域的周期延拓较小,会导致频谱混叠,从而“混淆”。
1.3.3 典型信号序列的特性分析
1.3.3.2 高斯序列的时域和频域特性
![在这里插入图片描述](https://img-blog.csdnimg.cn/20201126234915624.png#pic_center

1) 固定p=8,改变q的值,使分别等于2,4,8

在这里插入图片描述
在这里插入图片描述

比较上图可知,p一定时,q增大,高斯信号在时域波形展宽且变得平缓;而频域波形变陡,频谱分量减少。所以q决定了高斯信号的陡峭程度。
2) 固定q=8,改变p的值,使分别等于8,13,14
在这里插入图片描述
在这里插入图片描述

比较上图,q不变时,p的值决定了时域波形峰值的位置。当p增大时,波形整体向右移动。P=13、14时已经发生了明显的泄漏现象。频域部分随p增大频率分量增加,容易产生混叠。
1.3.3.3衰减正弦序列的时域和幅频特性
在这里插入图片描述

令a=0.1,f=0.0625,改变f=0.4375,再改变f=0.5625

f=在这里插入图片描述
在这里插入图片描述

0.0625时频谱没有发生混叠,f=0.5625时频谱发生了混叠。因为0.4375+0.5625=1,出现镜像频率,所以f=0.4375和f=0.5625的频谱图像完全相同。
1.3.3.4三角波序列和反三角波序列的时域和幅频特性
在这里插入图片描述

1)8点FFT分析信号Xcc(n)和Xdd(n)的幅频特性
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

反三角波序列形状相当于三角波序列在8个点的圆周移位得到,所以它们的8点FFT频谱相同。
2)在Xcc(n)和Xdd(n)末尾补零,用16点FFT分析这两个信号频谱

在这里插入图片描述
在这里插入图片描述

可以看到,两个信号的幅频特性不同了,因为当在信号后面补零并使用16点FFT,三角波序列就不能看作是反三角波序列经过圆周移位得到的了,所以频谱也就不相同。
1.3.4 离散信号、系统和系统响应的分析
1.3.4.2离散信号产生和系统分析
1)观察信号Xb(n)和系统Hb(n)的时域和幅频特性

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Xb(n)是单位脉冲序列,幅频特性在全频域上都为1,如上图,和理论相符。Hb(n)是系统单位冲击响应,与单位脉冲卷积之后,按照卷积相关性质,结果得到的信号与Hb(n)相同,如上图可见,系统响应在时域和频域特性都和Hb(n)相同。由于线性卷积的原因,系统响应有50+50-1=99个点,所以Y(n)时域如上图。
2)观察信号Xc(n)和系统Ha(n)的时域和幅频特性
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

因为Xc(n)=Ha(n),所以两者的时域和幅频特性应该相同。时域有10个非零值点,幅频两极大值之间有10-2=8个次峰。线性卷积之后得到的序列时域和幅频特性如上图,因为矩形序列非零长度为10,所以卷积结果非零长度应该为10+10-1=19,可以看到实验结果与理论结果一致。并且卷积得到的序列应该是一个三角波,峰值为10,正如图中结果所示,所以响应序列图形是正确的。计算两个矩形序列傅里叶变换的乘积得到响应序列幅频特性,与线性卷积得到的序列幅频特性相同,并且反变换之后得到的响应序列也相同。

改变Xc(n)的矩形宽度,使N=5
在这里插入图片描述

当Xc(n)的矩形宽度变为5时,时域有5个非零值点,幅频特性两极大值之间有5-2=3个次峰。卷积结果应该有10+5-1=14个非零值点,如下图,与理论结果相符。两个长度不等的矩形波序列卷积得到的序列应该为梯形波序列,如下图也和理论相符,且极值为5。两个傅里叶变换乘积得到的结果与直接线性卷积结果一致。
在这里插入图片描述

3)信号Xa(n)与Ha(n),其中A=1,α=0.4,Ωo=2.0734,T=1。

在这里插入图片描述
在这里插入图片描述

依次改变α=0.1绘制图形如下
Ωo=1.2516绘制图形如下
在这里插入图片描述

Xa(n)信号与系统单位冲击序列线性卷积得到的结果,与二者傅里叶变换乘积得到的结果幅频特性相同,其中,傅里叶乘积得到的结果反变换与线性卷积得到的序列也相同。
在这里插入图片描述
在这里插入图片描述

改变α=0.1时,衰减因子减小,信号Xa(n)衰减速度相比原来有所减缓,幅频特性比原来的幅频特性各分量都要小,但峰值位置相同。此时线性卷积结果与傅里叶变换乘积得到的幅频特性有微小差异,这是因为衰减速度减缓,仍对于之前的50点截取,会在一定程度上产生频谱泄露,所以两个结果有微小不同。预计若采取更多点数截取,如100个点,上面二者结果在一定误差下会保持相同。
改变Ωo=1.2516,改变了频率,相比原来2.0734减小了。从实验画出的信号时域序列也可以看到信号变化频率减小。观察幅频图,两个峰值位置向两端移动了一段距离,说明高频成分减小,低频成分增加,与频率减小的理论分析相符。由于并没有改变衰减因子,所以在现有的误差下,两信号线性卷积结果与傅里叶变换乘积结果相同。
1.3.4.3卷积定理的验证
1.3.4.2中已经进行了傅里叶变换相乘,直接得到系统响应幅频特性。比较直接线性卷积结果与傅里叶变换乘积结果,保持一致。对傅里叶变换乘积结果进行反变换,得到的序列也与线性卷积得到的序列相同。验证了卷积定理
总结MatLab进行数字信号处理实验项目时常用的函数及其功能:

  1. stem(x)函数用于绘制针状图,将需要绘制的数据存放在一个数组中,然后将这个数组作为参数传递给“stem”函数。
  2. subplot(x,y,z)函数用来同时画出数个小图形,并且存放在一个视窗之中,x是小图形的行数,y是小图形的列数,z是小图形的编号。
  3. figure用来保持输出上一个画图窗口,因为若不使用这个命令,每当新输出一个画图窗口都会覆盖之前的画图窗口。
  4. title(“标题”)用来设置图形的标题,跟在绘图函数后面使用。
  5. fft(x,m)用来计算x的离散傅里叶变换,参数m可以用来指定具体做多少个点的fft。
  6. abs(x)返回数组x中每个元素的绝对值。
  7. conv(x,y)卷积函数,返回x与y的卷积。
  8. sign(x)符号函数,返回与x大小相同的数组,其中对x中的每个元素取符号。
  9. zeros()创建全零的数组。
  10. angle(x)返回x中每个元素在[-π,π]中的相位角。

选做

1)改变信号Xa(n)的衰减因子,分别等于0.1,0.2,0.4。
因为没有改变频率f,所以频谱波峰位置不会改变。由于衰减因子增大,信号序列衰减的越来越快,所以频谱的高频成分占比变大。由绘制的频谱图可以看到,波峰位置相同,中央高频占比逐渐增大。符合预期估计。
在这里插入图片描述

2)LTI系统冲激响应为hn(n)=(0.9)^n,输入序列为Xc(n)。

在这里插入图片描述
在这里插入图片描述

Hn(n)=Xc(n)时,已在前面讨论过。
3)将序列Xc(n)分为奇偶序列
在这里插入图片描述
在这里插入图片描述

从绘图可以看到,Xc(n)的偶序列频域特性和Xc(n)的频域实部特性相同,而Xc(n)的奇序列频域特性和Xc(n)的频域虚部特性相同。这与理论结果一致,实信号偶分量变换对应频域实部,奇分量变换对应频域虚部。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页