感知器(作业)

该博客介绍了一个用Python编写的感知器类,包括向量操作、感知器构造及其训练方法。通过实例展示了如何训练一个能实现逻辑与(AND)功能的感知器,并进行预测测试。
摘要由CSDN通过智能技术生成
from __future__ import print_function
from functools import reduce

class VectorOp(object):
    def dot(x, y):
        # 计算两个向量x和y的内积,然后利用reduce求和
        return reduce(lambda a, b: a + b, VectorOp.element_multiply(x, y), 0.0)
    def element_multiply(x, y):
        return list(map(lambda x_y: x_y[0] * x_y[1], zip(x, y)))
    def element_add(x, y):
        # 将两个向量x和y按元素相加
        return list(map(lambda x_y: x_y[0] + x_y[1], zip(x, y)))
    def scala_multiply(v, s):
        # 将向量v中的每个元素和标量s相乘
        return map(lambda e: e * s, v)

class Perceptron(object):
    def __init__(self, input_num, activator):
        self.activator = activator
        # 权重向量初始化为0
        self.weights = [0.0] * input_num
        # 偏置项初始化为0
        self.bias = 0.0
    def __str__(self):
        return 'weights\t:%s\nbias\t:%f\n' % (self.weights, self.bias)
    def predict(self, input_vec):
        # 计算向量input_vec[x1,x2,x3...]和weights[w1,w2,w3,...]的内积
        # 然后加上bias
        return self.activator(
            VectorOp.dot(input_vec, self.weights) + self.bias)
    def train(self, input_vecs, labels, iteration, rate):
        for i in range(iteration):
            self._one_iteration(input_vecs, labels, rate)

    def _one_iteration(self, input_vecs, labels, rate):
        samples = zip(input_vecs, labels)
        # 对每个样本,按照感知器规则更新权重
        for (input_vec, label) in samples:
            # 计算感知器在当前权重下的输出
            output = self.predict(input_vec)
            # 更新权重
            self._update_weights(input_vec, output, label, rate)

    def _update_weights(self, input_vec, output, label, rate):
        delta = label - output
        self.weights = VectorOp.element_add(
            self.weights, VectorOp.scala_multiply(input_vec, rate * delta))
        # 更新bias
        self.bias += rate * delta


def f(x):
    return 1 if x > 0 else 0


def get_training_dataset():
    # 构建训练数据
    # 输入向量列表
    input_vecs = [[1, 1], [0, 0], [1, 0], [0, 1]]
    # 期望的输出列表,注意要与输入一一对应
    # [1,1] -> 1, [0,0] -> 0, [1,0] -> 0, [0,1] -> 0
    labels = [1, 0, 0, 0]
    return input_vecs, labels


def train_and_perceptron():

    # 创建感知器,输入参数个数为2(因为and是二元函数),激活函数为f
    p = Perceptron(2, f)
    # 训练,迭代10轮, 学习速率为0.1
    input_vecs, labels = get_training_dataset()
    p.train(input_vecs, labels, 10, 0.1)
    # 返回训练好的感知器
    return p


if __name__ == '__main__':
    # 训练and感知器
    and_perception = train_and_perceptron()
    # 打印训练获得的权重
    print(and_perception)
    # 测试
    print('1 and 1 = %d' % and_perception.predict([1, 1]))
    print('0 and 0 = %d' % and_perception.predict([0, 0]))
    print('1 and 0 = %d' % and_perception.predict([1, 0]))
    print('0 and 1 = %d' % and_perception.predict([0, 1]))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值