有汇源上下界最大流
有源汇上下界最大流最小流理解
题目
理解
#include<bits/stdc++.h>
using namespace std;
const int N=610,M=3e4,INF=0x3f3f3f3f;
int n,m,S,T;
int s,t;
int d[N];
int q[N],cur[N],h[N],ne[M],e[M],f[M],idx,A[N];
void add(int a,int b,int c,int d)
{
e[idx]=b,ne[idx]=h[a],f[idx]=d-c,h[a]=idx++;
e[idx]=a,ne[idx]=h[b],f[idx]=0,h[b]=idx++;
}
bool bfs()
{
memset(d,-1,sizeof(d));
int hh=0,tt=0;
q[hh]=S,cur[S]=h[S],d[S]=0;
while(hh<=tt)
{
int t=q[hh++];
for(int i=h[t];~i;i=ne[i])
{
int ver=e[i];
if(d[ver]==-1&&f[i])
{
d[ver]=d[t]+1;
cur[ver]=h[ver];
if(ver==T) return true;
q[++tt]=ver;
}
}
}
return false;
}
int find(int u,int limit)
{
if(u==T) return limit;
int flow=0;
for(int i=cur[u];~i&&flow<limit;i=ne[i])
{
cur[u]=i;
int ver=e[i];
if(d[ver]==d[u]+1&&f[i])
{
int t=find(ver,min(f[i],limit-flow));
if(!t) d[ver]=-1;
f[i]-=t,f[i^1]+=t,flow+=t;
}
}
return flow;
}
int dinic()
{
int r=0;
int flow;
while(bfs()) while(flow=find(S,INF)) r+=flow;
return r;
}
int main()
{
scanf("%d%d%d%d",&n,&m,&s,&t);
S=0,T=n+1;
memset(h,-1,sizeof(h));
int tot=0;
for(int i=1;i<=m;i++)
{
int a,b,c,d;
scanf("%d%d%d%d",&a,&b,&c,&d);
add(a,b,c,d);
A[a]-=c,A[b]+=c;
}
for(int i=1;i<=n;i++)
{
if(A[i]>0) add(S,i,0,A[i]),tot+=A[i];
else if(A[i]<0) add(i,T,0,-A[i]);
}
add(t,s,0,INF);
if(dinic()<tot)
{
puts("No Solution");
}else
{
int res=f[idx-1];
S=s,T=t;
f[idx-1]=f[idx-2]=0;
printf("%d\n",res+dinic());
}
return 0;
}
有汇源上下界最小流
题目
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+10,M=5e6+10,INF=0x3f3f3f3f;
int n,m,S,T;
int s,t;
int d[N];
int q[N],cur[N],h[N],ne[M],e[M],f[M],idx,A[N];
void add(int a,int b,int c,int d)
{
e[idx]=b,ne[idx]=h[a],f[idx]=d-c,h[a]=idx++;
e[idx]=a,ne[idx]=h[b],f[idx]=0,h[b]=idx++;
}
bool bfs()
{
memset(d,-1,sizeof(d));
int hh=0,tt=0;
q[hh]=S,cur[S]=h[S],d[S]=0;
while(hh<=tt)
{
int t=q[hh++];
for(int i=h[t];~i;i=ne[i])
{
int ver=e[i];
if(d[ver]==-1&&f[i])
{
d[ver]=d[t]+1;
cur[ver]=h[ver];
if(ver==T) return true;
q[++tt]=ver;
}
}
}
return false;
}
int find(int u,int limit)
{
if(u==T) return limit;
int flow=0;
for(int i=cur[u];~i&&flow<limit;i=ne[i])
{
cur[u]=i;
int ver=e[i];
if(d[ver]==d[u]+1&&f[i])
{
int t=find(ver,min(f[i],limit-flow));
if(!t) d[ver]=-1;
f[i]-=t,f[i^1]+=t,flow+=t;
}
}
return flow;
}
int dinic()
{
int r=0;
int flow;
while(bfs()) while(flow=find(S,INF)) r+=flow;
return r;
}
int main()
{
scanf("%d%d%d%d",&n,&m,&s,&t);
S=0,T=n+1;
memset(h,-1,sizeof(h));
int tot=0;
for(int i=1;i<=m;i++)
{
int a,b,c,d;
scanf("%d%d%d%d",&a,&b,&c,&d);
add(a,b,c,d);
A[a]-=c,A[b]+=c;
}
for(int i=1;i<=n;i++)
{
if(A[i]>0) add(S,i,0,A[i]),tot+=A[i];
else if(A[i]<0) add(i,T,0,-A[i]);
}
add(t,s,0,INF);
if(dinic()<tot)
{
puts("No Solution");
}else
{
int res=f[idx-1];
S=t,T=s;
f[idx-1]=f[idx-2]=0;
printf("%d\n",res-dinic());
}
return 0;
}