leetcode 28.实现strStr()、459.重复的子字符串

文章详细介绍了如何使用KMP算法解决LeetCode的28题(实现strStr())和459题(重复的子字符串)。在strStr()问题中,通过构建前缀表找到子串在主串中的位置。在重复子字符串问题中,利用KMP算法寻找最长相等前后缀,判断字符串是否由重复子串组成。时间复杂度均为O(m+n),空间复杂度为O(n)。
摘要由CSDN通过智能技术生成

leetcode 28.实现strStr()

leetcode 459.重复的子字符串

对于KMP算法不了解可以看我前面的博客

leetcode 28.实现strStr()

代码实现

class Solution {
public:
    void getNext(int* next, const string& s) {
        int j = 0;
        next[0] = 0;
        for(int i = 1; i < s.size(); i++) {
            while (j > 0 && s[i] != s[j]) {
                j = next[j - 1];
            }
            if (s[i] == s[j]) {
                j++;
            }
            next[i] = j;
        }
    }
    int strStr(string haystack, string needle) {
        if (needle.size() == 0) {
            return 0;
        }
        int next[needle.size()];
        getNext(next, needle);
        int j = 0;
        for (int i = 0; i < haystack.size(); i++) {
            while(j > 0 && haystack[i] != needle[j]) {
                j = next[j - 1];
            }
            if (haystack[i] == needle[j]) {
                j++;
            }
            if (j == needle.size() ) {
                return i - needle.size() + 1;
            }
        }
        return -1;
    }
};
  • 时间复杂度O(m+n)

  • 空间复杂度O(m)

细节处理

  • 只要理解了KMP算法的话,整体思路不难。需要注意的细节是在最后返回值时,由于返回值的最后一步一定是haystack[i] == needle[j],这时给j++了,但是i++还要等到下一个循环,由于满足要求了所以退出循环,返回值要给i多加上1.

  • 时间复杂度分析:n是字符串haystack的长度,m是字符串needle的长度。我们至多需要遍历两字符串一次。

空间复杂度分析:m是字符串needle的长度。我们只需要保存字符串needle的前缀表。

leetcode 459.重复的子字符串

KMP

代码实现

class Solution {
public:
    void getNext(int* next, const string& s){
        int j = 0;
        next[0] = 0;
        for(int i = 1; i < s.size(); i++){
            while(j > 0 && s[i] != s[j])
                j = next[j - 1];
            if(s[i] == s[j])
                j++;
            next[i] = j;
        }
    }
    bool repeatedSubstringPattern(string s) {
        if(s.size() == 0)
            return false;
        int next[s.size()];
        getNext(next, s);
        int len = s.size();
        if(next[len - 1] != 0 && len % (len - (next[len - 1])) == 0){
            return true;
        }
        return false;
    }
};
  • 时间复杂度O(n)

  • 空间复杂度O(n)

细节处理

  1. 在由重复子串组成的字符串中,最长相等前后缀不包含的子串就是最小重复子串,这里拿字符串s:abababab 来举例,ab就是最小重复单位,如图所示:

图中红框为最小重复字串。为什么是这样呢?

步骤一:因为 这是相等的前缀和后缀,t[0] 与 k[0]相同, t[1] 与 k[1]相同,所以 s[0] 一定和 s[2]相同,s[1] 一定和 s[3]相同,即:,s[0]s[1]与s[2]s[3]相同 。

步骤二: 因为在同一个字符串位置,所以 t[2] 与 k[0]相同,t[3] 与 k[1]相同。

步骤三: 因为 这是相等的前缀和后缀,t[2] 与 k[2]相同 ,t[3]与k[3] 相同,所以,s[2]一定和s[4]相同,s[3]一定和s[5]相同,即:s[2]s[3] 与 s[4]s[5]相同。

步骤四:循环往复。

所以字符串s,s[0]s[1]与s[2]s[3]相同, s[2]s[3] 与 s[4]s[5]相同,s[4]s[5] 与 s[6]s[7] 相同。

正是因为 最长相等前后缀的规则,当一个字符串由重复子串组成的,最长相等前后缀不包含的子串就是最小重复子串。

  1. 假设字符串s使用多个重复子串构成(这个子串是最小重复单位),重复出现的子字符串长度是x,所以s是由n * x组成。因为字符串s的最长相同前后缀的长度一定是不包含s本身,所以 最长相同前后缀长度必然是m * x,而且 n - m = 1,(这里如果不懂,看上面的推理)所以如果 nx % (n - m)x = 0,就可以判定有重复出现的子字符串。这与代码中len % (len - (next[len - 1])) == 0所对应。

  1. 时间复杂度分析:n为字符串长度,遍历字符串。

空间复杂度分析:n为字符串长度,建立一个next数组长度为n。

移动匹配

代码实现

class Solution {
public:
    bool repeatedSubstringPattern(string s) {
        string t = s + s;
        t.erase(t.begin()); t.erase(t.end() - 1); // 掐头去尾
        if (t.find(s) != std::string::npos) return true; // r
        return false;
    }
};

细节处理

  1. 当一个字符串s:abcabc,内部由重复的子串组成,那么这个字符串的结构一定是这样的:

也就是由前后相同的子串组成。

那么既然前面有相同的子串,后面有相同的子串,用 s + s,这样组成的字符串中,后面的子串做前串,前后的子串做后串,就一定还能组成一个s,如图:

所以判断字符串s是否由重复子串组成,只要两个s拼接在一起,里面还出现一个s的话,就说明是由重复子串组成。

当然,我们在判断 s + s 拼接的字符串里是否出现一个s的的时候,要刨除 s + s 的首字符和尾字符,这样避免在s+s中搜索出原来的s,我们要搜索的是中间拼接出来的s。

  1. string::npos作为string的成员函数的一个长度参数时,表示“直到字符串结束(until the end of the string)。所以if (t.find(s) != std::string::npos)表示在字符串结束前能够找到s。

  1. 直接用contains,find 之类的库函数。 却忽略了实现这些函数的时间复杂度(暴力解法是m * n,一般库函数实现为 O(m + n))。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值