AcWing:Dijkstra

伪码:

    a. 初始化 dist[1] = 0, dist[i] = +inf  S:当前已经确定为最短距离的点
    b. for(int i = 1; i <= n; i ++)
        {
            1. 寻找不在 S 中距离源点最近的点 t
            2. 将 t 加到 S 中
            3. 用 t 更新其他点的距离(dist[j] = min(dist[j], dist[t] + g[t][j]))
        }

Dijkstra算法的正确性证明:

定理: 最短路径的子路径仍然是最短路径(反证易得)

Dijkstra算法正确性证明: (rel是真实最短距离)

定理: Dijkstra算法中, 将顶点 u 添加到 S = {1,...,x} 中时, dist[u] = rel[u]

证: 假设 Dijkstra 算法, 将顶点 u 添加到 S 中时, dist[u] != rel[u]

由于 dist[u] 是 rel[u] 的上界, 故 dist[u] > rel[u]

应存在一条真实的最短路径 rel[u], 不妨设其为<1,...,x,y,...,u>,

其中边 (x, y) 横跨 <S, V-S>, x 属于 S, y 属于 V-S

对任意 x 属于 S, 有 rel[x] = dist[x]

1.<1,...,x,y>是<1,...,x,y,...,u>的子路径, 故:

rel[y] = rel[x] + w[x][y] = dist[x] + w[x][y]

2.算法对从 x 出发的所有边进行松弛操作, 故:

dist[y] <= dist[x] + w[x][y]

由于 dist 是 rel 的上界, 于是综合 1 与 2 可得 dist[y] = rel[y]

最短路径<1,...,x,y,...,u>中, y 出现在 u 之前, 故:

dist[u] > rel[u] >= rel[y] > dist[y]

由于 dist[u] > dist[y], u 不可能是下一个被添加的顶点, 故产生矛盾

算法步骤:

  1. 用一个 dist 数组保存源点到其余各个节点的距离,dist[i] 表示源点到节点 i 的距离。初始时,dist 数组的各个元素为无穷大。

用一个状态数组 state 记录是否找到了源点到该节点的最短距离,state[i] 如果为真,则表示找到了源点到节点 i 的最短距离,state[i] 如果为假,则表示源点到节点 i 的最短距离还没有找到。初始时,state 各个元素为假。

  1. 源点到源点的距离为 0。即dist[1] = 0。

  1. 遍历 dist 数组,找到一个节点,这个节点是:没有确定最短路径的节点中距离源点最近的点。假设该节点编号为 i。此时就找到了源点到该节点的最短距离,state[i] 置为 1。

  1. 遍历 i 所有可以到达的节点 j,如果 dist[j] 大于 dist[i] 加上 i -> j 的距离,即 dist[j] > dist[i] + w[i][j](w[i][j] 为 i -> j 的距离) ,则更新 dist[j] = dist[i] + w[i][j]。

  1. 重复 3 4 步骤,直到所有节点的状态都被置为 1。

  1. 此时 dist 数组中,就保存了源点到其余各个节点的最短距离。

AcWing 850. Dijkstra求最短路 I

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;

const int N=510;

int g[N][N];    //为稠密阵所以用邻接矩阵存储
int dist[N];    //用于记录每一个点距离第一个点的距离
bool st[N];     //用于记录该点的最短距离是否已经确定

int n,m;

int Dijkstra()
{
    memset(dist, 0x3f,sizeof dist);     //初始化距离  0x3f代表无限大

    dist[1]=0;  //第一个点到自身的距离为0

    for(int i=0;i<n;i++)      //有n个点所以要进行n次 迭代
    {
        int t=-1;       //t存储当前访问的点, 将t设置为-1 因为Dijkstra算法适用于不存在负权边的图

        for(int j=1;j<=n;j++)   //这里的j代表的是从1号点开始
            if(!st[j]&&(t==-1||dist[t]>dist[j]))     
                t=j;

        st[t]=true;   

        for(int j=1;j<=n;j++)           //依次更新每个点所到相邻的点路径值
            // 这里省略了一个if(!st[j]) 但是不影响,因为按照Dijkstra算法的操作顺序,先确定最短距离的点的距离已经比后确定的要小
            dist[j]=min(dist[j],dist[t]+g[t][j]);
    }

    if(dist[n]==0x3f3f3f3f) return -1;  //如果第n个点路径为无穷大即不存在最低路径
    return dist[n];
}
int main()
{
    cin>>n>>m;

    memset(g,0x3f,sizeof g);    //初始化图 因为是求最短路径
                                //所以每个点初始为无限大

    while(m--)
    {
        int x,y,z;
        cin>>x>>y>>z;
        g[x][y]=min(g[x][y],z);     //如果发生重边的情况则保留最短的一条边
    }

    cout<<Dijkstra()<<endl;
    return 0;
}

时间复杂度:寻找路径最短的点:O(n^2)、加入集合S:O(n)、更新距离:O(m)

总时间复杂度为O(n^2)

堆优化Dijkstra

a. 初始化 dist[1] = 0, dist[i] = +inf  S:当前已经确定为最短距离的点
b. for(int i = 1; i <= n; i ++)
    {
        1. 寻找不在 S 中距离源点最近的点 t    ... 总共n^2次计算
        2. 将 t 加到 S 中        ... 总共n次计算
        3. 用 t 更新其他点的距离(dist[j] = min(dist[j], dist[t] + g[t][j]))   ... 总共m次计算(m条边)
    }

从时间复杂度分析可以看出,Dijkstra算法最慢的一步在于1.找不在S中的距离最近的点,为O(n^2),要想优化这一部分可以想到使用堆数据结构,于是第一步的时间复杂度就降为O(1)(总体时间复杂度降为O(n)),但是在堆中每次修改一个数的时间复杂度为O(logn),所以其第三步的时间复杂度就升为O(mlogn),所以整个算法的时间复杂度就优化为了O(mlogn)。

朴素版dijkstra适合稠密图(m > n),时间复杂度为O(n^2),用邻接矩阵来存。

堆优化版dijkstra适合稀疏图(m ~ n),时间复杂度为O(mlogn),用邻接表来存。

AcWing 850. Dijkstra求最短路 II

#include<iostream>
#include<cstring>
#include<queue>

using namespace std;

typedef pair<int, int> PII;

const int N = 150010;

// 稀疏图用邻接表来存
int h[N], e[N], ne[N], idx;
int w[N]; // 用来存权重
int dist[N];
bool st[N]; // 如果为true说明这个点的最短路径已经确定

int n, m;

void add(int x, int y, int c)
{
    // 有重边也不要紧,假设1->2有权重为2和3的边,再遍历到点1的时候2号点的距离会更新两次放入堆中
    // 这样堆中会有很多冗余的点,但是在弹出的时候还是会弹出最小值2+x(x为之前确定的最短路径),
    // 并标记st为true,所以下一次弹出3+x会continue不会向下执行。
    w[idx] = c;
    e[idx] = y;
    ne[idx] = h[x]; 
    h[x] = idx++;
}

int dijkstra()
{
    memset(dist, 0x3f, sizeof(dist));
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap; // 定义一个小根堆
    // 这里heap中为什么要存pair呢,首先小根堆是根据距离来排的,所以有一个变量要是距离,
    // 其次在从堆中拿出来的时候要知道知道这个点是哪个点,不然怎么更新邻接点呢?所以第二个变量要存点。
    heap.push({ 0, 1 }); // 这个顺序不能倒,pair排序时是先根据first,再根据second,
                         // 这里显然要根据距离排序
    while(heap.size())
    {
        PII k = heap.top(); // 取不在集合S中距离最短的点
        heap.pop();
        int ver = k.second, distance = k.first;

        if(st[ver]) continue;
        st[ver] = true;

        for(int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i]; // i只是个下标,e中在存的是i这个下标对应的点。
            if(dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({ dist[j], j });
            }
        }
    }
    if(dist[n] == 0x3f3f3f3f) return -1;
    else return dist[n];
}

int main()
{
    memset(h, -1, sizeof(h));
    scanf("%d%d", &n, &m);

    while (m--)
    {
        int x, y, c;
        scanf("%d%d%d", &x, &y, &c);
        add(x, y, c);
    }

    cout << dijkstra() << endl;

    return 0;
}

AcWing 1488. 最短距离

本题设计无向边,一条a--b的无向边等价于一条a->b的有向边加上一条b->a的有向边

此题是多源最短路问题,那么应该怎么将其转换成单源最短路问题以此应用Dijkstra呢?

我们只需要定义一个虚拟的节点,它到每一个源起点的距离都是0,然后再以这个虚拟节点作为起点即可

#include <iostream>
#include <cstring>
#include <queue>

using namespace std;

typedef pair<int, int> PII;

const int N = 100010, M = 3 * N;
int h[N], w[M], e[M], ne[M], idx, dist[N];
int n, m;
bool st[N];

void add(int a, int b, int c){
    w[idx] = c;
    e[idx] = b;
    ne[idx] = h[a];
    h[a] = idx++;
}

void Dijkstra(){
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    memset(dist, 0x3f, sizeof dist);
    dist[0] = 0;
    heap.push({0, 0});
    
    while(!heap.empty())
    {
        auto t = heap.top();
        heap.pop();
        
        int ver = t.second, distance = t.first;
        
        if(st[ver]) continue;
        st[ver] = true;
        
        for(int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if(dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({dist[j], j});
            }
        }
    }
}

int main(){
    memset(h, -1, sizeof h);
    
    cin >> n >> m;
    while(m--)
    {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c);
        add(b, a, c);
    }
    
    int k;
    cin >> k;
    while(k--)
    {
        int x;
        cin >> x;
        add(0, x, 0);
    }
    
    Dijkstra();
    
    int q;
    cin >> q;
    while(q--)
    {
        int y;
        cin >> y;
        printf("%d\n", dist[y]);
    }
    
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值