动态规划:0-1背包问题

leetcode 416.分割等和子集

背包问题

背包问题的分类

以上正常需要掌握的是01背包和完全背包。完全背包也是由01背包稍作变换得来:即每个物品的数量是无限的。

01背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

这道题很容易想到使用回溯法去解决,因为每个物品的状态只有两种:取或者不取,我们用回溯法搜索出所有的情况,那么算法的时间复杂度为O(2^n),这里的n表示物品的数量。

由于指数级别的时间复杂度太大了,所以我们需要使用dp来优化算法的效率。

示例:

背包最大重量为4。

物品为:

重量

价值

物品0

1

15

物品1

3

20

物品2

4

30

问背包能背的物品最大价值是多少?

二维dp数组01背包

动规五部曲:

  1. 确定dp数组以及下标的含义

对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

  1. 确定递推公式

可以有两个方向来推出dp[i][j],现在假设我们已经知道了dp[i - 1][j]的值:

  1. 如果放入第i个物品,背包的容量j < weight[i],就相当于放入物品i的行为是不合法的,此时dp[i][j]的值与dp[i - 1][j]的值相等。

  1. 如果再放入第i个物品,背包的容量仍然满足要求。dp[i - 1][j - weight[i]]为背包容量为j - weight[i]时从下标为[0-i - 1]里的物品里任意取得价值总和,此时放入物品i仍然合法,则dp[i][j]的值为dp[i - 1][j - weight[i]] + value[i]。

上面的两种可能性使我们递推得到了dp[i][j]。

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
  1. dp数组的初始化

从dp数组的定义出发,如果背包容量为0,则背包内价值总和最大一定为0。

dp[i][0] = 0;

根据状态转移方程:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

里面存在i - 1的索引,为了防止越界,我们要初始化所有dp[0][j]的值。从上面的示例可以看到,物品0的重量为1,价值为15。所以有:

for(int j = 0; j < weight[0]; j++){
    dp[0][j] = 0;
}
for(int j = weight[0]; j <= maxWeight; j++){
    dp[0][j] = value[0];
}

对于其他下标给定任意值均可,因为其他下标的值是我们用状态转移方程计算得出的,要对原先的值进行覆盖。为了代码写的简便所以都初始化为0。

那么就可以简化dp数组的初始化代码了:

vector<vector<int>> dp(weight.size(), vector<int>(maxWeight + 1, 0));
for(int j = weight[0]; j <= maxWeight; j++){
    dp[0][j] = value[0];
}
  1. 确定遍历顺序

可以看出,有两个遍历的维度:物品与背包重量。

先遍历物品还是先遍历背包重量呢?其实都可以,但是先遍历物品更好理解。

先遍历物品的代码如下:

for(int i = 1; i < weight.size(); i++){
    for(int j = 0; j <= maxWeight; j++){
        if(j < weight[i]) dp[i][j] = dp[i - 1][j];
        else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
    }
}

先遍历背包重量的代码如下:

for(int j = 0; j <= maxWeight; j++){
    for(int i = 1; i < weight.size(); i++){
        if(j < weight[i]) dp[i][j] = dp[i - 1][j];
        else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
    }
}

要理解递归的本质和递推的方向

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。

dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:

先遍历背包如图:

从二维数组可以看出来,虽然for循环遍历的次序不同,但是dp[i][j]所需要的数据均在其左上角,这不影响dp[i][j]的推导。

  1. 举例推导dp数组

来看一下对应的dp数组的数值,如图:

整体测试代码如下:

void test_twodimensional_01bag_problem(){
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    int maxWeight = 4;
    vector<vector<int>> dp(weight.size(), vector<int>(maxWeight + 1, 0));
    for(int j = 0; j <= maxWeight; j++){
        dp[0][j] = value[0];
    }
    for(int i = 1; i < weight.size(); i++){
        for(int j = 0; j <= maxWeight; j++){
            if(j < weight[i]) dp[i][j] = dp[i - 1][j];
            else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
        }
    }
    
    cout << dp[weight.size() - 1][maxWeight] << endl;
    
}

int main(){
    test_twodimensional_01bag_problem();
}

一维数组01背包(滚动数组)

对于背包问题其实状态都是可以压缩的。

在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);

与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。

这就是滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层。

动规五部曲:

  1. 确定dp数组以及下标的含义

在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

  1. 确定递推公式

dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,

所以递归公式为:

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
  1. dp数组的初始化

dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?

看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了

那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了。

  1. 确定遍历顺序

for(int i = 0; i < weight.size(); i++){
    for(int j = maxWeight; j >= weight[i]; j--){
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    }
}

二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。

为什么呢?

倒序遍历是为了保证物品i只被放入一次。但如果一旦正序遍历了,那么物品0就会被重复加入多次!

举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15

如果正序遍历

dp[1] = dp[1 - weight[0]] + value[0] = 15

dp[2] = dp[2 - weight[0]] + value[0] = 30

此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。

为什么倒序遍历,就可以保证物品只放入一次呢?

倒序就是先算dp[2]

dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)

dp[1] = dp[1 - weight[0]] + value[0] = 15

所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。

为什么二维dp数组历的时候不用倒序呢?

因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖。

两个嵌套for循环的顺序,代码中是先遍历物品嵌套遍历背包容量,那可不可以先遍历背包容量嵌套遍历物品呢?不可以!

因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品

倒序遍历的原因是,本质上还是一个对二维数组的遍历,并且右下角的值依赖上一层左上角的值,因此需要保证左边的值仍然是上一层的,从右向左覆盖。

  1. 举例推导dp数组

一维dp,分别用物品0,物品1,物品2 来遍历背包,最终得到结果如下:

整体代码如下:

void test_onedimensional_01bag_problem(){
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    int maxWeight = 4;
    vector<int> dp(maxWeight + 1, 0);
    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        for(int j = maxWeight; j >= weight[i]; j--) { // 遍历背包容量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
    cout << dp[maxWeight] << endl;
}

int main(){
    test_onedimensional_01bag_problem();
}

leetcode 416.分割等和子集

给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200

示例 1:

  • 输入: [1, 5, 11, 5]

  • 输出: true

  • 解释: 数组可以分割成 [1, 5, 5] 和 [11].

示例 2:

  • 输入: [1, 2, 3, 5]

  • 输出: false

  • 解释: 数组不能分割成两个元素和相等的子集.

只有确定了如下四点,才能把01背包问题套到本题上来。

  • 背包的体积为sum / 2

  • 背包要放入的商品(集合里的元素)重量为元素的数值,价值也为元素的数值

  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。

  • 背包中每一个元素是不可重复放入。

动规五部曲:

  1. 确定dp数组以及下标的含义

01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。

本题中每一个元素的数值既是重量,也是价值。

套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]

那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。

  1. 确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。

所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

  1. dp数组如何初始化

在01背包,一维dp如何初始化,已经讲过,

从dp[j]的定义来看,首先dp[0]一定是0。

如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。

这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了

本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。

题目中有要求:

  • 1 <= nums.length <= 200

  • 1 <= nums[i] <= 100

// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
vector<int> dp(10001, 0);
  1. 确定遍历顺序

for(int i = 0; i < nums.size(); i++){
    for(int j = target; j >= nums[i]; j--){
        dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
    }
}
  1. 举例推导dp数组

dp[j]的数值一定是小于等于j的。

如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。

用例1,输入[1,5,11,5] 为例,如图:

整体代码如下:

class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int sum = 0;
        for(int i = 0; i < nums.size(); i++){
            sum += nums[i];
        }
        if(sum % 2 == 1) return false;
        int target = sum / 2;
        vector<int> dp(10001, 0);
        for(int i = 0; i < nums.size(); i++){
            for(int j = target; j >= nums[i]; j--){
                dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
            }
        }
        if(dp[target] == target) return true;
        return false;
    }
};
  • 时间复杂度:O(n^2)

  • 空间复杂度:O(n),虽然dp数组大小为一个常数,但是大常数

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值