日记 | 毕业 2022.5.19收到论文的评审意见之后,删掉了匿名封面,写完了致谢。可能是意识到马上要毕业了,心里有特别多不舍⭐⭐,所以想要安静地记录这份留恋和怀念。如果没有毕业典礼的话,就谨以此向我的本科和硕士学业生涯告别。虽然,选择读研是很早就有的想法,不过科研并没有期待中那么快乐,反而是有了很多需要自己面对的挑战;虽然疫情之下,没有办法跟以前的同学当面告个别,跟她们认真说声再见;一直封闭在学校也没能再去看看桃花堤和海河夜景,就要匆忙地走了……但我知道,等毕业之后,我肯定会很想念在天津的日子。看着自己的硕士毕业
阅读 | 《不朽》米兰·昆德拉 写在前面:上半年的时候追 “奇葩说” ,阿詹(詹青云) 在辩题 “终其一生只是一个平凡的人,你后悔吗?”里化用了《不朽》的一句话——“人世间原本就有大的不朽和小的不朽,大的不朽是世人对你言必称名,那些陌不相识的人在你死后依然记得你,而小的不朽不过是爱你的人依然记得你”。然后就有了想看这本书的想法,有些拖延的我最近终于买到并开始看啦,于是就记录一下喜欢的段落吧~豆瓣里有一个帖子建议年轻的读者暂时不要看,发现我果然看不懂。不过也正是因为看不懂,才会更有思考的空间~ 第一部 脸我们身上.
coding | 一点积累 写在前面:本篇用于记录日常coding中遇到的比较良好的编程习惯和心得,持续更新,希望可以逐渐提升自己的coding & debuging 能力~ 暂时以时间戳为单位,后续再整理呀!见贤思齐焉,加油!目录2021.12.21 Office 365激活踩坑2021.8.4 清晰表达自己的想法2021.7.7 文档和代码的备份2021.6.9 明确需求再写代码2021.12.21 Office 365激活踩坑一顿背景描述:18年12月我买到现在用的笔记本后安装是office2016,.
[论文阅读] | Self-Adaptive Training & label noise 写在前面:前段时间在学习关于噪声样本的处理,导师分享了两篇论文,其中一篇为Self-Adaptive Training。核心思想是,在线性组合预测标签和实际标注标签的基础上,进一步改进为训练过程中预测标签和实际标注标签的移动加权平均值。最初的一个疑问:训练数据中含有部分噪声样本,即喂给网络的数据有部分是错误的,那么网络是如何在这种情况下学习到噪声样本可能对应的正确标签呢???论文:Huang, Lang, Chao Zhang, and Hongyang Zhang. “Self-adapti.
[论文阅读] | MobileNets & depthwise separable convolutions 写在前面:遇到不会的点,要督促自己及时查漏补缺。上周六涉及到深度可分离卷积,涉及到了我的知识盲区,于是昨天找了 MobileNets 相关的笔记和论文,重点在于理解可分离卷积的设计思想。本篇笔记更新记录:2021.12.15 整理可分离卷积、以及在其基础上建立的MobileNets的基本概念。目录1 整体思想2 巨人的肩膀——在轻量级模型领域的已有工作3 核心——深度可分离卷积3.1 标准的卷积运算3.2 深度可分离卷积4 总结1 整体思想出发点:在CV领域,一个研究趋势是神经网络层数越来.
秋招小结 | 劝退的声音太多了,我想加一点鼓励 写在前面:“我的秋招还没开始时,身边就有同学劝退我,这段时间,听到的劝退的声音太多了(我也因为这些声音迷失过、纠结过)。所以我想给自己、给我博客的读者们加一点鼓励~”。整体思想:理智听从建议,遵从自己内心。目录个人情况几点必备(硬实力)心得体会(软实力)关于选择(与努力并行)一点祝福个人情况1.本硕专业为软件工程,研究方向为计算机视觉与图像处理(cv)。有计算机基础课程和深度学习方面的知识储备、三段cv领域学习和研究经验。2.目标:cv及其相关方向的工作(选择的原因放在本文最后)。&nb.
Fluent Python | 函数装饰器、迭代器和生成器 写在前面:Fluent Python 系列是学习《Fluent Python》的笔记 ~这是一本适合Python进阶的书,不仅有一些高级语法,作者对部分底层实现也有讲解,以便于我们理解Python的设计,比如为什么普通字典是无序的呢?函数装饰器1 变量作用域2 闭包3 装饰器3.1 基本概念和写法3.2 装饰器何时执行3.3 标准库中常用的两个装饰器函数3.4 参数化装饰器4 小结1 变量作用域注意函数体内赋值的局部变量与函数体外同名全局变量  .
笔记 | leetcode算法题练习 写在前面:算法复习和练习主要是根据本科、研究生数据结构和算法课件以及作者“代码随想录”整理的刷题攻略。本篇博客记录自己的笔记。持续更新。。。“代码随想录”刷题攻略:https://github.com/youngyangyang04/leetcode-master很感谢这份教程,让我凌乱的刷题慢慢变得有序~动态规划 &n.
网课 | Andrew Ng 深度学习公开课——03 结构化机器学习项目 本节主要内容《深度学习公开课》第三部分 “结构化机器学习项目”主要是从数据和误差分析两个角度描述如何提升机器学习项目的准确率,然后讲述迁移学习和端到端的学习这两个常用方法的概念。整体思路为将机器学习算法应用到一个具体任务中时,可以尝试如下步骤:定义数据集和度量指标建立原始系统进行偏差、方差和误差分析根据分析结果确立下一步优化方向详细笔记 小
网课 | Andrew Ng 深度学习公开课——02 神经网络优化 02 神经网络优化本节主要内容思维导图课程笔记延伸阅读小结本节主要内容《深度学习公开课》第二部分 “神经网络优化”主要是介绍提升网络性能的技巧,包括具体的做法和原理:L2正则化、Dropout正则化、BatchNormalization、学习率衰减等;然后依次介绍常用的优化器的具体计算过程:GD、SGD、Batch GD、RMSprop、Adam;最后是参数优化技巧:网格搜索和随机搜索等。这章的很多的知识点既是网络调优过程中非常有用的技巧,也是面试中常问的点,例如:BN和dropout训练和测试的