python机器学习(分类)

import numpy as np
import pandas as pd
df = pd.read_csv('hw.csv')
df.dropna()
df.drop_duplicates()
from sklearn.preprocessing import LabelEncoder
df['Gender'] = LabelEncoder().fit_transform(df['Gender'])
print(df)
X = df[['Height','Weight']]
Y = df[['Gender']]
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,train_size=0.8)

# 数据建模
# 逻辑回归
from sklearn.linear_model import LogisticRegression
# 逻辑回归类创建对象
# model = LogisticRegression()
# 朴素贝叶斯
# from sklearn.naive_bayes import MultinomialNB
# model = MultinomialNB()
# 决策树
# from sklearn.tree import DecisionTreeClassifier
# model = DecisionTreeClassifier()
# 支持向量机
from sklearn.svm import SVC
model = SVC()
model.fit(X_train,Y_train)
print(model.score(X_test,Y_test))
print(model.predict([[165,58]]))

import matplotlib.pyplot as plt
h = np.arange(150,200,0.1)
w = np.arange(30,90,0.1)
newh,neww = np.meshgrid(h,w)
plt.pcolormesh(newh,neww,model.predict(np.c_[newh.ravel(),neww.ravel()]).reshape(newh.shape))
plt.scatter(df['Height'],df['Weight'],c=df['Gender'])
plt.show()

hw.csv数据:

Gender,Age,Height,Weight
M,21,163,60
M,22,164,56
M,21,165,60
M,23,168,55
M,21,169,60
M,21,170,54
M,23,170,80
M,23,170,64
M,22,171,67
M,22,172,65
M,23,172,60
M,21,172,60
M,23,173,60
M,22,173,62
M,21,174,65
M,22,175,70
M,22,175,70
M,22,175,65
M,23,175,60
M,21,175,62
M,21,176,58
M,21,178,70
M,23,178,75
M,23,180,63
M,23,180,71
M,23,183,75
F,20,153,42
F,20,156,44
F,21,156,38
F,21,157,48
F,21,158,52
F,23,158,45
F,22,159,43
F,22,160,50
F,21,160,45
F,21,160,52
F,23,160,50
F,22,161,50
F,21,161,45
F,21,162,55
F,20,162,60
F,20,163,56
F,20,163,56
F,21,163,59
F,22,164,55
F,23,164,47
F,21,165,45
F,21,165,45
F,20,165,60
F,20,168,58
F,21,168,49
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值