分析:
本题为二分的应用。区间可设为
−
10000
≤
n
≤
10000
−10000≤n≤10000
−10000≤n≤10000,这也说明了二分的本质不是单调,而是边界。
首先根据
l
l
l 和
r
r
r 的中点
m
i
d
mid
mid 处的三次方和
n
n
n 的大小来选择子区间进行逼近。
这里假设输入为
8
8
8,用图模拟下局部二分过程。
- 如果
m
i
d
∗
m
i
d
∗
m
i
d
≥
n
mid * mid * mid ≥ n
mid∗mid∗mid≥n,则说明
m
i
d
≥
n
mid ≥ n
mid≥n 的三次方根,则应当在
[
l
,
m
i
d
]
[l,mid]
[l,mid] 的范围内继续逼近,故令
r
=
m
i
d
r = mid
r=mid;

- 如果
m
i
d
∗
m
i
d
∗
m
i
d
<
n
mid * mid * mid < n
mid∗mid∗mid<n,则说明
m
i
d
<
n
mid < n
mid<n 的三次方根,则应当在
[
m
i
d
,
r
]
[mid,r]
[mid,r] 的范围内继续逼近,故令
l
=
m
i
d
l = mid
l=mid;

上面两部直至 $r - l < 10^{-8} $时结束(这里有一个问题就是如果结果保留
k
k
k 位小数,这里就是
1
0
−
(
k
+
2
)
10^{-(k+2)}
10−(k+2))。
C++ 代码中保留
n
n
n 位小数需要加入头文件iomanip,以及 cout << setprecision(n) << std::fixed << ...。
代码(C++)
#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
double n;
cin >> n;
double l = -10000, r = 10000;
while (r - l > 1e-8)
{
double mid = (l + r) / 2;
if (mid * mid * mid >= n) r = mid;
else l = mid;
}
cout << setprecision(6) << std::fixed << l << endl;
}
325

被折叠的 条评论
为什么被折叠?



