MD5信息摘要算法(Message-Digest Algorithm),一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hash value),用于确保信息传输完整一致。MD5由美国密码学家罗纳德·李维斯特(Ronald Linn Rivest)设计,于1992年公开,用以取代MD4算法。这套算法的程序在 RFC 1321 标准中被加以规范。1996年后该算法被证实存在弱点,可以被加以破解,对于需要高度安全性的数据,专家一般建议改用其他算法,如SHA-2。2004年,证实MD5算法无法防止碰撞(collision),因此不适用于安全性认证,如SSL公开密钥认证或是数字签名等用途。
代码实现
import time
import string
from random import randint
def gen_salt2(length):
return "".join(string.ascii_letters[randint(0, 51)] for _ in range(length))
# 程序中:大断字节序
A = 0X67452301
B = 0XEFCDAB89
C = 0X98BADCFE
D = 0X10325476
K = [ 0xd76aa478 , 0xe8c7b756 , 0x242070db , 0xc1bdceee ,
0xf57c0faf , 0x4787c62a , 0xa8304613 , 0xfd469501 ,
0x698098d8 , 0x8b44f7af , 0xffff5bb1 , 0x895cd7be ,
0x6b901122 , 0xfd987193 , 0xa679438e , 0x49b40821 ,
0xf61e2562 , 0xc040b340 , 0x265e5a51 , 0xe9b6c7aa ,
0xd62f105d , 0x02441453 , 0xd8a1e681 , 0xe7d3fbc8 ,
0x21e1cde6 , 0xc33707d6 , 0xf4d50d87 , 0x455a14ed ,
0xa9e3e905 , 0xfcefa3f8 , 0x676f02d9 , 0x8d2a4c8a ,
0xfffa3942 , 0x8771f681 , 0x6d9d6122 , 0xfde5380c ,
0xa4beea44 , 0x4bdecfa9 , 0xf6bb4b60 , 0xbebfbc70 ,
0x289b7ec6 , 0xeaa127fa , 0xd4ef3085 , 0x04881d05 ,
0xd9d4d039 , 0xe6db99e5 , 0x1fa27cf8 , 0xc4ac5665 ,
0xf4292244 , 0x432aff97 , 0xab9423a7 , 0xfc93a039 ,
0x655b59c3 , 0x8f0ccc92 , 0xffeff47d , 0x85845dd1 ,
0x6fa87e4f , 0xfe2ce6e0 , 0xa3014314 , 0x4e0811a1 ,
0xf7537e82 , 0xbd3af235 , 0x2ad7d2bb , 0xeb86d391 ,]
maxInt=0x100000000
S = [ 7 , 12 , 17 , 22 , 7 , 12 , 17 , 22 ,
7 , 12 , 17 , 22 , 7 , 12 , 17 , 22 ,
5 , 9 , 14 , 20 , 5 , 9 , 14 , 20 ,
5 , 9 , 14 , 20 , 5 , 9 , 14 , 20 ,
4 , 11 , 16 , 23 , 4 , 11 , 16 , 23 ,
4 , 11 , 16 , 23 , 4 , 11 , 16 , 23 ,
6 , 10 , 15 , 21 , 6 , 10 , 15 , 21 ,
6 , 10 , 15 , 21 , 6 , 10 , 15 , 21 ,]
#填充字节
def fill(sequence):
'将字节序列按小端序填充成512位【16整数*4字节】的倍数'
count=len(sequence)
multi_16s=((count+8)//64+1)*16 # 共需要整数的个数,每个整数存储4个字节的数据
sequence+=[0]*(multi_16s*4-count) # 用 0 填充
sequence[count] |= 128 # 用一个 1 补在后面
multi_4bytes=[]
for i in range(len(sequence)//4):
sequence[i*4+3],sequence[i*4+2],sequence[i*4+1],sequence[i*4]=tuple(sequence[i*4:(i+1)*4])
# 大端序存储
multi_4bytes.append(int("".join(["{:08b}".format(ii) for ii in sequence[i*4:(i+1)*4]]),2))
# 每四个Ascii合并成一个4字节整数
multi_4bytes[-2],multi_4bytes[-1]=int("{:064b}".format(count*8)[32:],2),int("{:064b}".format(count*8)[:32],2)
return multi_4bytes
def shift(x,n):
'循环左移'
return (( x << n ) | (x >> (32-n)))
def F(X,Y,Z):return (X&Y)|((~X)&Z)
def G(X,Y,Z):return (X&Z)|(Y&(~Z))
def H(X,Y,Z):return X^Y^Z
def I(X,Y,Z):return Y^(X|(~Z))
def Go(a,b,c,d,fun,m,s,K):
thesum=(a + fun(b, c, d) + int(m) + K)%maxInt
return (b+shift(thesum,s))%maxInt
def int32ToHex(a):
'32位整型集合转16进制'
md5=''
for i in a:
x="{:08x}".format(i) # 整型【32位2】->8位16
md5+=x[6:]+x[4:6]+x[2:4]+x[:2] # 每两位切割, 切割4刀->逆序【大变小端】
return md5
if __name__ == "__main__":
text1=["128","512","1280","2048"]#多次验证MD5的正确性
for length in text1:
text = gen_salt2(int(length))
t1 = time.perf_counter() #计算MD5的算法的性能
sequence=list(bytes(text,'utf-8')) # 将unicode转换为字节序列
text_int4=fill(sequence) # 将字节序列按小端序填充成4字节整数
for i in range(len(text_int4)//16): # 主循环
a,b,c,d=A,B,C,D
M = [text_int4[i*16+ii] for ii in range(16)] # 取出16个整数
for ii in range(64):
if ii<16: A,B,C,D=D,Go(A,B,C,D,F,M[ii],S[ii],K[ii]),B,C
elif ii<32: A,B,C,D=D,Go(A,B,C,D,G,M[(ii*5+1)%16],S[ii],K[ii]),B,C
elif ii<48: A,B,C,D=D,Go(A,B,C,D,H,M[((ii*3)+5)%16],S[ii],K[ii]),B,C
else: A,B,C,D=D,Go(A,B,C,D,I,M[ii*7%16],S[ii],K[ii]),B,C
A,B,C,D=(A+a)%maxInt,(B+b)%maxInt,(C+c)%maxInt,(D+d)%maxInt # 此处还是大段字节
md5 = int32ToHex([A,B,C,D])
t2 = time.perf_counter()
# print("32位小写:",md5)
print(str(length)+"位md5算法加密后:",md5)
print(f"测试性能:{t2 - t1}s")
实验结果
实验心得
散列值可以用来验证消息的完整性,MD5也正是利用了这个特点,通过对MD5算法原理的学习及实验,我对散列函数压缩性、容易计算、抗修改性的特点有了更加深刻的体会,对于MD5算法的验证基本只有借助计算机才可以进行,因为MD5算法在计算量上相对来说还是比较复杂的,通过计算机我们可以很简单的进行求和运算,当完成最后一个明文的分组运算时,A、B、C、D中的数值就是最后的结果(即散列函数值)。