- 博客(75)
- 资源 (5)
- 问答 (6)
- 收藏
- 关注
原创 Python-金融相关代码讲解
其中,词频字典记录了每个关键词在对应文本文件中出现的次数,股票代码和股票名称分别从文件名中提取,年份在示例中暂时设置为 “未知”。的作用是统计给定文件夹中的每个文本文件中指定关键词的出现频率,并返回包含这些统计结果的列表。是一个列表,其中的每个元素都是一个元组,包含四个部分:词频字典、股票代码、股票名称和年份。总结:这段代码的主要目的是将关键词匹配的结果写入到一个 Excel 文件中,方便后续查看和分析。这段代码的功能是创建一个新的 Excel 工作表,并在表格的第一行(即表头)写入相关的列标题。
2025-03-24 10:35:08
1092
原创 Python处理Excel文件实战例子——不断优化代码过程
在以前,商业分析对应的英文单词是Business Analysis,大家用的分析工具是Excel,后来数据量大了,Excel应付不过来了(Excel最大支持行数为1048576行),人们开始转向python和R这样的分析工具了,这时候商业分析对应的单词是Business Analytics。其实python和Excel的使用准则一样,都是[We don’t repeat ourselves],都是尽可能用更方便的操作替代机械操作和纯体力劳动。
2025-02-14 17:52:16
959
原创 仿射密码实验——Python实现(完整解析版)
文章目录前言实验内容实验操作步骤1.编写主程序2.编写加密模块3.编写解密模块4.编写文件加解密模块实验结果实验心得前言实验目的1)初步了解古典密码2)掌握仿射密码的实现实验方法根据下图仿射密码(变换)加解密的描述,用所熟悉的语言,完成实验内容、描述实验操作步骤、实验结果与实验心得。实验环境计算机语言:Python开发环境:Pycharm原理实验内容编程实现仿射密码,要求有加密步骤和解密步骤。若输入参数a,b不合法,则报错。提供两种解密方法,一是掌握密钥破解,而是无密钥的暴
2025-01-17 21:52:45
9627
2
原创 网络流量分析笔记
为了提升IPv4和IPv6的流量包处理性能,可以采用优化的路由查找算法、硬件加速、多核并行处理、高效的数据结构及智能缓存机制等策略,确保两种协议在网络中的高效协同运作,满足现代网络对高吞吐量和低延迟的需求。SDN的发展虽然具有前瞻性,但是困难重重,学术研究的堆积并没有让它可以广泛应用在各种生活场景之中,其中原因可能有控制器容易受到攻击的特性,不过最大可能性是无法平衡好成本和性能之间的关系。深入分析真实环境中的分类规则,有助于理解算法在实际应用中的表现,并指导优化策略的设计。
2025-01-16 21:31:41
1130
原创 动态规划——最长公共子序列
如图,最后一位都为A,那么A前的子序列的最大公共子序列则为dp[i-1][j-1]这样放眼到完整子序列中,长度便是dp[i-1][j-1]+1这样便可以得到递推公式dp[i][j-1]字符串 ( S_1 ) 的前 ( i ) 个字符和字符串 ( S_2 ) 的前 ( j ) 个字符的最长公共子序列长度。
2024-12-17 21:19:04
1025
原创 分支限界笔记
分支限界法是一种广度优先搜索问题解空间树的方法,它结合了限界函数以提高搜索效率。你有一个容量为10kg的背包,想从以下物品中挑选一些装进去,使背包中的总价值最大。物品重量 (kg)价值 (元)A26B510C312规则每个物品最多选一次。背包的总重量不能超过 10kg。在 0/1 背包问题中,解空间可以描述为一个多维向量 (x1, x2, …每个变量 xi 属于 {0, 1},表示第 i 个物品是否被选中。解空间的结构是一个解向量的集合。
2024-12-14 22:04:05
1066
原创 回溯法笔记
它通过尝试所有的选择,逐步逼近最终的解决方案。假设我们有一个数组 [1, 2, 3],我们想要找出它的所有子集(即:从数组中任意选取一些元素,可能为空集,也可能包含所有元素)。,在递归的过程中,逐步构造解空间树,探索每个可能的路径。如果加入元素后不符合条件(比如已经遍历完数组),我们回溯,尝试不加入这个元素,然后继续遍历。然后选择是否包含数组中的第一个元素(1),然后再考虑是否包括第二个元素(2),以此类推。我们从空集开始,逐步构建所有可能的子集,并在每次递归时输出当前的选择和回溯的情况。
2024-12-12 20:33:07
1143
原创 Latex个人使用记录笔记——书写论文
之前打数学建模比赛,队友负责写论文时使用了Latex,看起来像写代码一样,还有模板可直接套用,于是产生兴趣想要体验一下。
2024-12-08 15:00:54
3339
原创 latex 编译错误及解决之Package natbib Error: Bibliography not compatible with author-year citations.
最近学习latex中,在引言文献的地方一直遇到bug,如下图所示。在询问GPT无果和多方查找后,终于找到一篇解决问题的帖子。
2024-11-28 16:37:52
586
2
原创 边缘计算的学习
边缘计算(英语:Edge computing),是一种分布式计算的架构,将应用程序、数据资料与服务的计算,由网络中心节点,移往网络逻辑上的边缘节点来处理。在这种架构下,资料的分析与知识的产生,更接近于数据资料的来源,因此更适合处理大数据。通过采用混合云战略,企业可以在自己的数据中心和公共云基础架构(如 Amazon Web Services、Microsoft Azure 或 Google Cloud )上运行相同的工作负载,同样地,边缘战略则将云环境扩展到更多地方。然而,它也带来了新的安全挑战。
2024-11-09 14:38:00
1350
原创 【项目复现】——DDoS-SDN Detection Project
添加自定义功能如果需要扩展Pox的功能,比如实现流量监控或自定义数据包转发规则,可以通过Python脚本在Pox中实现自定义模块。自定义模块的代码可以放置在pox/ext文件夹下,并通过调用命令来加载。例如:./pox.py forwarding.l2_learning my_module其中,my_module为自定义模块的文件名(无.py后缀),可以在此模块中加入自定义功能代码。在完成系统部署后,对检测系统的性能和效果进行分析和总结,以确定DDoS检测的有效性和进一步优化的方向。
2024-10-26 11:44:20
1430
原创 动态规划——石子合并问题
但不同的是,动态规划是自底向上分解,并且会保存子问题的解,在需要时可直接拿过来使用,这一点是区别于分治的。这类问题存在大量重叠子问题,即子问题的解可以被多次重复利用,而这些子问题的结果依赖于更小的子问题结果。子问题划分: 为了找到最优的合并顺序,我们需要考虑如何将区间 [i, j] 划分为更小的子区间 [i, k] 和 [k+1, j],并递归地计算它们的最优解。例如,如果我们有三堆石子 [4, 4, 5],不同的合并顺序会导致不同的得分,总共有两种合并顺序,分别为21和22。
2024-10-22 11:09:09
2987
原创 【论文阅读】SST: Multi-Scale Hybrid Mamba-Transformer Experts for Long-Short Range Time Series Forecasting
作者在方法部分提出了一个多尺度的混合Mamba-Transformer架构,称为State Space Transformer(SST)。SST模型的核心思想是将时间序列分为长程全局模式和短程局部变化,分别由Mamba模型和Local Window Transformer(LWT)负责处理。为了实现这两者的有效结合,设计了一个长短期路由器来动态调整这两个专家模型的贡献。
2024-10-18 11:15:17
1788
4
原创 【论文阅读】SST: Multi-Scale Hybrid Mamba-Transformer Experts for Long-Short Range Time Series Forecasting
尽管时间序列预测取得了重大进展,但现有的预测器常常忽视长期和短期时间序列之间的异质性,导致实际应用中的性能下降。在这项工作中,我们强调需要针对不同范围制定不同的目标。我们指出,时间序列可以分解为全局模式和局部变化,这应该在长期和短期时间序列中分别解决。为了实现这些目标,我们提出了一种多尺度混合 MambaTransformer 专家模型 (SST)。
2024-10-15 20:50:08
1273
1
原创 网络流量预测的学习——持续更新ing
另有一个使用R语言来处理网络流量的项目:https://github.com/rankinjl/internet-traffic-stats-project/blob/master/DataSetProject.R。flowdata.csv下载地址:https://github.com/ftconan/python3/blob/master/pandas_demo/flowdata.csv。:这是用户实际传输和接收的数据,如网页内容、电子邮件、文件传输、视频流、音频流等。
2024-10-11 20:33:25
1319
原创 Jupyter的使用分享
简单来说呢,Jupyter Notebook是在浏览器上会打开一个网页,这个网页里我们可以新建一个ipynb格式的文件,之后使用这个文件来编写、运行我们的代码,同时还可以记笔记(代码框的上下文)来完善我们的心路历程,这些后续会讲解。之前与许多小伙伴交流的时候,发现大家对于pycharm更容易上手(可能是比较好设置中文的原因),在使用Jupyter的时候却晕乎乎的,所以打算简单写一篇小文章来分享一下自己使用的经验。一般呢,我们不太喜欢jupyter默认打开文件夹的地方,其实这个是可以指定的。
2024-09-30 15:24:21
1300
2
原创 神经网络的初步学习
左侧的公式:展示了激活函数如何将输入数据变为非线性,从而增强网络的学习能力。右侧的结构图:显示了 MLP 的典型结构,数据从输入层流入隐藏层,每层经过一个激活函数后,再输出到下一层,最终给出预测结果。局部性让卷积层能够关注图像的局部区域,而不是整个图像。平移不变性使卷积层能够识别图像中相同的特征,不论它们在何处。参数数量小,因为卷积层只需要学习卷积核的权重,而不是所有输入数据的连接权重。卷积核学习模式:通过训练,卷积核可以自动学会识别图像中的不同特征。
2024-09-25 19:58:31
987
3
原创 随机梯度下降的学习
在机器学习的旅途中,不可避免需要与它打交道,那么该如何初步理解它的用途呢?好的,想象你在一个山谷中,想要找到最低点(山谷的底部)。你现在在某个地方,但不确定如何到达最低点。这个过程就像是梯度下降。寻找方向:你看看四周,发现周围的地势向下倾斜的方向是你应该走的方向。这个“倾斜”就对应于梯度。一步一步前进:你每次只走一小步,朝着那个倾斜的方向前进。每走一步,你再次查看周围的地形,找到新的倾斜方向,并继续向前走。
2024-09-24 20:29:43
807
原创 从决策树到GBDT、随机森林
决策树(Decision Tree),它是一种以树形数据结构来展示决策规则和分类结果的模型,作为一种归纳学习算法,其重点是将看似无序、杂乱的已知数据,通过某种技术手段将它们转化成可以预测未知数据的树状模型,每一条从根结点(对最终分类结果贡献最大的属性)到叶子结点(最终分类结果)的路径都代表一条决策的规则。随机森林的核心思想是通过构建多个独立的决策树,并结合树的预测结果,来提高模型的准确性、稳健性,并减少过拟合。通过在 OOB 数据上评估模型的性能,可以近似得到模型的误差,不需要专门的验证集。
2024-09-23 19:33:36
1216
原创 数据集的选取、标注
数据标注有助于将原始数据转化为ML算法可以理解和学习的结构化格式。通过为数据提供背景和意义,标注过的数据可以作为训练ML模型的基础,以识别模式,进行预测,并执行各种任务。数据标注是一个对原始数据进行标记和分类的过程,使其可用于训练ML模型。人工智能方向研究生的必备网站。
2024-09-21 11:29:36
285
原创 机器学习案例:加州房产价格(五)
要解决这个问题,一个常见的方法是给每个分类创建一个二元属性:当分类是<1H OCEAN,该属性为 1(否则为 0),当分类是INLAND,另一个属性等于 1(否则为 0),以此类推。现在,你就可以使用这个“训练过的”imputer来对训练集进行转换,将缺失值替换为中位数,结果是一个包含转换后特征的普通的 Numpy 数组。通过前面的工作,你应该注意到了属性total_bedrooms有一些缺失值,缺失值的处理是需要着重解决的。大多机器学习算法不能处理缺失的特征,因此先创建一些函数来处理特征缺失的问题。
2024-05-18 16:35:20
772
1
原创 机器学习案例:加州房产价格(四)
这张图也呈现了一些不是那么明显的直线:一条位于 450000 美元的直线,一条位于 350000 美元的直线,一条在 280000 美元的线,和一些更靠下的线。你可以看到,纬度和房价中位数有轻微的负相关性(即,越往北,房价越可能降低)。尽管北加州海岸区域的房价不是非常高,但离大海距离属性也可能很有用,所以这不是用一个简单的规则就可以定义的问题。通过之前的工作,你只是快速查看了数据,对要处理的数据有了整体了解,现在的目标是更深的探索数据。另外,如果训练集非常大,你可能需要再采样一个探索集,保证操作方便快速。
2024-05-14 09:42:21
901
原创 机器学习案例:加州房产价格(二)
参考链接:https://hands1ml.apachecn.org/2/设计好系统后,要开始在工作区编写代码来解决问题了。
2024-05-12 14:58:58
879
原创 机器学习案例:加州房产价格(一)
参考链接:https://hands1ml.apachecn.org/2/假设你是被一家地产公司雇佣的数据科学家,现在需要做一些工作。公司所给的数据集是StatLib 的加州房产价格数据集。这个数据集是基于 1990 年加州普查的数据。数据已经有点老,但它有许多优点,利于学习,所以假设这个数据为最近的数据。为了便于学习理解,稍后学习过程中添加了一个类别属性,并除去了一些。你的第一个任务是利用加州普查数据,建立一个加州房价模型。这个数据包含每个街区组的人口、收入中位数、房价中位数等指标。
2024-05-12 14:24:11
961
原创 2.监督/非监督学习
参考链接为:https://hands1ml.apachecn.org/1/机器学习可以根据训练时监督的量和类型进行分类。主要有四类:监督学习、非监督学习、半监督学习和强化学习。本文将简单介绍监督学习和非监督学习。
2024-05-11 14:36:17
889
原创 1.理解机器学习
虽然并不是一个有自我意识的天网系统(Skynet),垃圾邮件过滤器从技术上是符合机器学习的(它可以很好地进行学习,用户几乎不用再标记某个邮件为垃圾邮件)。后来出现了更多的数以百计的机器学习产品,支撑了更多你经常使用的产品和功能,从推荐系统到语音识别。相反的,基于机器学习技术的垃圾邮件过滤器会自动学习哪个词和短语是垃圾邮件的预测值,通过与普通邮件比较,检测垃圾邮件中反常频次的词语格式。大多数人听到“机器学习”,往往会在脑海中勾勒出一个机器人:一个可靠的管家,或是一个可怕的终结者,这取决于你问的是谁。
2024-05-10 16:31:36
418
原创 Js逆向简单分析-某网站登录案例
都为:e10adc3949ba59abbe56e057f20f883e,至此确认为md5加密.将e10开头的数据进行分析,发现长度为32,猜测是md5类型数据加密。但txtpassword作为密码和我们输入的123456不一样,与我们刚才输入数据进比对,发现txtusername一致,在控制台测试下这个函数hex_md5,得出e10开头的结果。通过分析得出,密码为hex_md5函数进行加密。F12打开网络,并点击立即登录进行流量包分析。发现与我们刚才分析得出的加密字段一致。与之前在流量包看到的一致。
2024-03-30 14:42:57
524
原创 计算机网络基本知识(一)
单位时间内通过某个网络(或信道、接口)的数据量。安检的履带检查物品,如手机、电脑、行李。式子:时延带宽积 = 传播时延 x 带宽。带宽变大,单位时间内传输的数据更多了。单位:kb/s,kb/s,Mb/s。从上图看出往返时延为30ms左右。主机之间链路上有多少时间有数据流。数据流大,就像车道上车太多会堵车。网络的通信线路传送数据的能力。比如上面图片还在链路上的比特。末端处理:接收方进行处理。记忆要点:10的三次方。记忆要点:2的10次方。所以看电磁波的传播速率。堵车就车走的比平时慢了。
2024-02-08 17:37:00
1009
原创 计算机网络概念、组成、功能和分类
计算机网络是互连的、自治的的计算机集合(互连:互联互通 通信链路,自治:无主从关系)通信设备:比如路由器、路由器 线路:将系统和通信设备两者联系的介质之类的。
2024-02-07 21:51:11
981
原创 ip、子网掩码和A、B、C段
这个子网掩码可以用来划分一个IP地址空间,使得前19位表示网络,后面的13位表示主机。子网掩码通常以连续的1和0组成,其中1表示网络部分,0表示主机部分。这里前面的19位都是1,表示网络部分,后面的13位是0,表示主机部分。要求主机号的话,要将子网掩码的二进制取反,再和ip的二进制进行与运算,得到的结果转为十进制就是主机号。IP地址和子网掩码在网络中密切关联,共同用于确定一个设备属于哪个网络以及如何划分网络中的主机。总的来说,IP地址和子网掩码共同工作,帮助确定设备的网络位置,确保它们能够正确地进行通信。
2024-02-05 15:42:45
1807
原创 网桥与网关
网桥:网桥也叫桥接器,是连接两个局域网的一种存储/转发设备,它能将一个大的LAN分割为多个网段,或将两个以上的LAN互联为一个逻辑LAN,使LAN上的所有用户都可访问服务器。网关:网关是一个大概念,不具体特指一类产品,只要连接两个不同的网络的设备都可以叫网关;最简单的网桥有两个端口,复杂些的网桥可以有更多的端口。网桥的每个端口与一个网段相连。换句话说,路由器可以实现网关的功能,但是路由器功能不仅仅是实现网关;与网桥只是简单地传达信息不同,当信息到达网关以后,网关要对信息重新进行加工,以适应目的系统的需求。
2024-02-05 14:33:25
1876
原创 云服务介绍
云服务,顾名思义就是云上的服务,简单的来说就是在云厂商(例如 AWS、阿里云)那里买的服务。目前国内云厂商有阿里云、腾讯云、华为云、天翼云、Ucloud、金山云等等,国外有亚马逊的 AWS、Google 的 GCP、微软的 Azure 等等。总的来说,云服务为组织提供了灵活性、成本效益和可伸缩性,但在使用云服务时,安全性、合规性和数据隐私等问题必须得到妥善处理。顶级的安全专家应该密切关注最新的威胁趋势和最佳实践,以确保在云环境中保持数据和应用程序的安全性。
2023-10-24 13:33:56
530
原创 DWT与图像转换——Python和Matlab实现(完整解析版)
提取:将原载体图像进行二级离散小波变换得到三级分辨率级下的多个个细节子图,取cH2,cV2,cD2和一个逼近子图cA,嵌入后的载体图像进行二级离散小波变换得到一级分辨率下的一个逼近子图ca和三个细节子图chl,cvl,cd1,再计算并重构水印图像。将原载体图像进行二级离散小波变换得到三级分辨率级下的多个个细节子图,取cH2,cV2,cD2和一个逼近子图cA,嵌入后的载体图像进行二级离散小波变换得到一级分辨率下的一个逼近子图ca和三个细节子图chl,cvl,cd1,再计算并重构水印图像。
2023-06-15 11:00:42
1742
请问设置了unsigned后,为什么-255变成了256(我看有些文章说会插入失败)
2022-07-22
vscode遇到代码扩展报错:XHR failed
2022-07-16
请求一道有关Java数组的问题
2022-05-15
请师傅补充代码,在void Best_allocate(int request)/*最佳适应分配函数,根据申请的request字节数来分配空间*/ { }这个模块,关于内存管理算法模拟
2021-12-12
执行如下python代码,分别输入整数9和10,结果相同都为3628800,哪里出错了?
2021-09-17
TA创建的收藏夹 TA关注的收藏夹
TA关注的人