JZ12 矩阵中的路径
请设计一个函数,用来判断在一个n乘m的矩阵中是否存在一条包含某长度为len的字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。 例如 。。。。 矩阵中包含一条字符串"bcced"的路径,但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入该格子。
数据范围:0≤n,m≤20 0 \le n,m \le 20\ 0≤n,m≤20 ,1≤len≤25 1\le len \le 25\ 1≤len≤25
示例1:
输入:[[a,b,c,e],[s,f,c,s],[a,d,e,e]],“abcced”
返回值:true
示例2:
输入:[[a,b,c,e],[s,f,c,s],[a,d,e,e]],“abcb”
返回值:false
题目分析:
- dfs遍历:pb存入的是bool型的是否遍历数组矩阵a[][]当前元素,传入参数为矩阵数组、结果字符串、当前的坐标i和j,还有到达的层数index
- dfs需要步骤–截止条件、候选节点。
- 截止条件为已遍历到结果字符串的最后一位
- 候选节点为未越界的上下左右坐标,并且满足条件!pb[x][y]&&p[x][y]==str[index],就往下一层继续遍历
代码如下:
class Solution {
public:
bool pb[26][26]={false};
bool flag=false;
bool hasPath(vector<vector<char> >& p, string str) {
for(int i=0;i<p.size();i++){
for(int j=0;j<p[0].size();j++){
if(!pb[i][j]&&p[i][j]==str[0]){
pb[i][j]=true;
dfs(p,str,1,i,j);
pb[i][j]=false;
if(flag){
return true;
}
}
}
}
return false;
}
void dfs(vector<vector<char> >& p, string str,int index,int i,int j){
//截至条件
if(flag==true||index==str.size()){
flag=true;
return;
}
//候选节点
for(int x=i-1;x<=i+1;x++){
for(int y=j-1;y<=j+1;y++){
//筛选合法
if((x==i-1&&y==j)||(x==i+1&&y==j)||(x==i&&y==j-1)||(x==i&&y==j+1)){
if(x>=0&&y>=0&&x<p.size()&&y<p[0].size()){
//最终筛选
if(!pb[x][y]&&p[x][y]==str[index]){
// cout<<str[index]<<" "<<x<<" "<<y<<endl;
pb[x][y]=true;
dfs(p,str,index+1,x,y);
pb[x][y]=false;
}
}
}
}
}
}
};