背包问题


前言

复习acwing算法基础课的内容,本篇为讲解基础算法:动态规划——背包问题,关于时间复杂度:目前博主不太会计算,先鸽了,日后一定补上。


一、动态规划

动态规划(Dynamic Programming,DP)是求解决策过程最优化的过程,个人认为是目前接触的所有算法里最绕的…

这里的题目的解题方法来自于:y总的闫氏dp分析法


二、例题,代码

AcWing 2. 01背包问题

本题链接:AcWing 2. 01背包问题
本博客提供本题截图:
在这里插入图片描述

本题解析

在这里插入图片描述

AC代码

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;

int v[N];      //体积
int w[N];      //价值
int f[N][N];   // f[i][j], j体积下前i个物品的最大价值 

int main()
{
    int n, m;
    cin >> n >> m;
    
    for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
    
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m; j ++ )
        {
            f[i][j] = f[i - 1][j];    //不装这个第i件物品
            if (j >= v[i])            //如果可以装第i件物品
                f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
        }
        
    cout << f[n][m] << endl;
    
    return 0;
}

代码优化

我们把二维数组转为一维数组
这里先给出AC代码,然后去讲解其中的细节

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N];

int main()
{
    cin >> n >> m;

    for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];

    for (int i = 1; i <= n; i ++ )
        for (int j = m; j >= v[i]; j -- )
            f[j] = max(f[j], f[j - v[i]] + w[i]);

    cout << f[m] << endl;

    return 0;
}

首先去解释我们的数组f,这里的f[j]代表的是,在背包容量为j的前提下的最优解

我们可以观察和第一个AC代码的最大差距就是对于我们的第二个for循环,我们的第二个for循环相当于是逆序的,这里来解释一下为什么是逆序:

对于二维数组的状态 (未优化版本),我们的状态f[i][j]其实是由i - 1这个状态表达出来的,我们可以理解为:小的数据是需要我们去保护的,不能被破坏的,因为我们在优化的过程中,其实动态规划的思维是没有改变的,即该题的实现方式是没有发生改变的,我们只是用了一种更为高效的方式去优化我们的代码,故我们需要维护小的数据,即从大到小去循环遍历,保护我们的小数据,简单来说的话,就是我们如果正序遍历,我们的小数据会被【破坏】,但是我们的大数据是由小数据得到的,故我们为了防止小数据被【破坏】,我们采用逆序的遍历更新方式。

AcWing 3. 完全背包问题

本题链接:AcWing 3. 完全背包问题
本博客提供本题截图:
在这里插入图片描述

本题解析

在这里插入图片描述

TLE代码

#include <iostream>
#include <cstdio>
#include <algorithm>

using namespace std;

const int N = 1010;

int v[N], w[N];
int f[N][N];

int  main()
{
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ ) cin >>v[i] >> w[i];
    
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m; j ++ ) 
            for (int k = 0; v[i] * k <= j; k ++ )
                f[i][j] = max (f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
                
    cout << f[n][m] << endl;
    
    return 0;
}

优化

在这里插入图片描述

AC代码

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;

int v[N], w[N];
int f[N][N];

int main()
{
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
    
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m; j ++ )
        {
            f[i][j] = f[i - 1][j];
            if (j >= v[i])
            	f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]);
        }
    
    cout << f[n][m] << endl;
    
    return 0;
}

代码优化

有没有感觉这个代码似曾相识呢?可以回去对比一下01背包问题中的代码,我们可以惊讶的发现,完全背包问题和01背包问题的代码大致都一样,只有核心代码处有细小的差别:

f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);         01背包
f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]);            多重背包

所以我们可以按照01背包类似的优化方法去优化,这里注意,01背包问题中每一个f[i, j]状态都是由f[i - 1, j]得到的,这就是唯一和多重背包问题不同的地方,故我们的多重背包的优化即第二重循环为正序即可

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;

int v[N], w[N];
int f[N];

int main()
{
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
    
    for (int i = 1; i <= n; i ++ )
        for (int j = v[i]; j <= m; j ++ )
            f[j] = max(f[j], f[j - v[i]] + w[i]);
    
    cout << f[m] << endl;
    
    return 0;
}

AcWing 4. 多重背包问题

本题链接:AcWing 4. 多重背包问题
本博客提供本题截图:
在这里插入图片描述

本题解析

本题数据小,直接暴力枚举即可

AC代码

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 110;

int f[N][N];
int v[N], w[N], s[N];

int main()
{
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i] >> s[i];
    
    for (int i = 1; i <= n; i ++ )
        for (int j = 0; j <= m; j ++ )
            for (int k = 0; k <= s[i] && k * v[i] <= j; k ++ )
                f[i][j] = max (f[i][j], f[i - 1][j - k * v[i]] + w[i] * k);
                
    cout << f[n][m] << endl;
    
    return 0;
}

AcWing 5. 多重背包问题 II

本题链接:AcWing 5. 多重背包问题 II
本博客提供本题截图:
在这里插入图片描述

本题解析

本题和上一题基本相同,但是如果还是暴力去做的话显然会TLE,这里我们采用二进制去优化:

比如,对于一个数1023,如果我们进行正常的枚举的话需要枚举1024次,但是如果我们把它拆成:
1 2 4 8 16 32 64 128 256 512,这么10组数字通过组合可以组合出1~1023中所有的数字

那么对于一个随意的数字比如200,我们也可以通过相同的方式进行拆解:
1 2 4 8 16 32 64 128 73

按照上述操作进行打包之后,我们只需要按照正常的01背包问题即可得到答案

AC代码

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 25000, M = 2010;

int v[N], w[N];
int f[M];

int main()
{
    int n, m;
    int cnt = 0;
    cin >> n >> m;
    
    for (int i = 1; i <= n; i ++ )
    {
        int a, b, s;
        cin >> a >> b >> s;
        int k = 1;
        while (k <= s)
        {
            cnt ++;
            v[cnt] = a * k;
            w[cnt] = b * k;
            s -= k;
            k *= 2;
        }
        if (s > 0)
        {
            cnt ++;
            v[cnt] = a * s;
            w[cnt] = b * s;
        }
    }
    
    n = cnt;
    
    for (int i = 1; i <= n; i ++ )
        for (int j = m; j >= v[i]; j -- )
            f[j] = max (f[j], f[j - v[i]] + w[i]);
            
    cout << f[m] << endl;
    
    return 0;
}

AcWing 9. 分组背包问题

本题链接:AcWing 9. 分组背包问题
本博客提供本题截图:
在这里插入图片描述
在这里插入图片描述

本题解析

在这里插入图片描述
这里直接发一维优化后的代码,注意到第i个状态是由i - 1状态推导而来的,故采用的是01背包问题的优化方式

AC代码

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 110;

int v[N][N], w[N][N], s[N];
int f[N];

int main()
{
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ )
    {
        cin >> s[i];
        for (int j = 0; j < s[i]; j ++ )
            cin >> v[i][j] >> w[i][j];
    }
    
    for (int i = 1; i <= n; i ++ )
        for (int j = m; j >= 1; j -- )
            for (int k = 0; k < s[i]; k ++ )
                if (v[i][k] <= j)
                    f[j] = max (f[j], f[j - v[i][k]] + w[i][k]);
                
    cout << f[m] << endl;
    
    return 0;
}

三、时间复杂度

关于动态规划——背包问题的时间复杂度以及证明,后续会给出详细的说明以及证明过程,目前先鸽了。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辰chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值