数位统计DP


前言

复习acwing算法基础课的内容,本篇为讲解基础算法:动态规划——数位统计DP,关于时间复杂度:目前博主不太会计算,先鸽了,日后一定补上。


一、动态规划

动态规划(Dynamic Programming,DP)是求解决策过程最优化的过程,个人认为是目前接触的所有算法里最绕的…

这里的题目的解题方法来自于:y总的闫氏dp分析法


二、AcWing 338. 计数问题

本题链接:AcWing 338. 计数问题
本博客提供本题截图:
在这里插入图片描述
在这里插入图片描述

本题解析

介绍一下代码中出现的函数的用途:
int count(int n, int x):返回在1 ~ nx出现的次数
int get(vector<int> num, int l, int r):返回num数组中从r位到l位的数是多少
int power10(int x):返回10x次方

下面来看分析过程:
如何求a ~ bi出现的次数:利用前缀和的思路,即count(b, i) - count(a - 1, i)

下面开始说明如何实现count函数:
假设我们需要去求 1 ~ n中,1出现的次数,n = abcdefg
我们的思路为:分别求出1在每一位上出现的次数,那么这里我们假设求出1在第四位上出现的次数,即1 <= xxx1yyy <= abcdefg
按照两个总方向去分析:
(1) xxx = 000 ~ abc - 1:对于这种情况的话yyy的取值为:000 ~ 999,故这种的总情况数为:abc * 1000
(2) xxx = abc
                     (2.1) d < 1,那么abc1yyy > abc0efg,故这种没有符合情况的数
                     (2.2) d = 1yyy的取值可为000 ~ efg,故这种的总情况数为:efg + 1
                     (2.3) d > 1yyy的取值可为000 ~ 999,故这种的总情况数为:1000

下面开始 特判
上述例子中,我们用的是1去举例,那么我们接下来去考虑最特殊的数字:0
0不会影响上述count函数实现中的 (2) 部分,只会对 (1) 部分产生影响:因为不可以出现形如0123这种数字
还是上述案例,我们对于 (1) xxx的取值范应为001 ~ abc - 1,这样做就可以防止出现前导0,我们在依次遍历每一位上0出现的个数的时候,因为首位不能为0,故for循环可以写成:for (int i = n - 1 - !x; i >= 0; i -- )

AC代码

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

const int N = 10;

int get(vector<int> num, int l, int r)
{
    int res = 0;
    for (int i = l; i >= r; i -- ) res = res * 10 + num[i];
    return res;
}

int power10(int x)
{
    int res = 1;
    while (x -- ) res *= 10;
    return res;
}

int count(int n, int x)
{
    if (!n) return 0;

    vector<int> num;
    while (n)
    {
        num.push_back(n % 10);
        n /= 10;
    }
    n = num.size();

    int res = 0;
    for (int i = n - 1 - !x; i >= 0; i -- )
    {
        if (i < n - 1)
        {
            res += get(num, n - 1, i + 1) * power10(i);
            if (!x) res -= power10(i);       //对 0 的特判,即减去 001 的那一种情况
        }

        if (num[i] == x) res += get(num, i - 1, 0) + 1;
        else if (num[i] > x) res += power10(i);
    }

    return res;
}

int main()
{
    int a, b;
    while (cin >> a >> b , a)
    {
        if (a > b) swap(a, b);    //题目中数据比较狗,可能出现 a > b 的情况,故需要特判一下

        for (int i = 0; i <= 9; i ++ )
            cout << count(b, i) - count(a - 1, i) << ' ';
        cout << endl;
    }

    return 0;
}

三、时间复杂度

关于动态规划——数位统计DP的时间复杂度以及证明,后续会给出详细的说明以及证明过程,目前先鸽了。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辰chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值