前言
复习acwing算法基础课的内容,本篇为讲解基础算法:动态规划——数位统计DP,关于时间复杂度:目前博主不太会计算,先鸽了,日后一定补上。
一、动态规划
动态规划(Dynamic Programming,DP)是求解决策过程最优化的过程,个人认为是目前接触的所有算法里最绕的…
这里的题目的解题方法来自于:y总的闫氏dp分析法
二、AcWing 338. 计数问题
本题链接:AcWing 338. 计数问题
本博客提供本题截图:
本题解析
介绍一下代码中出现的函数的用途:
int count(int n, int x)
:返回在1 ~ n
中x
出现的次数
int get(vector<int> num, int l, int r)
:返回num
数组中从r
位到l
位的数是多少
int power10(int x)
:返回10
的x
次方
下面来看分析过程:
如何求a ~ b
中i
出现的次数:利用前缀和的思路,即count(b, i) - count(a - 1, i)
下面开始说明如何实现count
函数:
假设我们需要去求 1 ~ n
中,1
出现的次数,n = abcdefg
我们的思路为:分别求出1
在每一位上出现的次数,那么这里我们假设求出1
在第四位上出现的次数,即1 <= xxx1yyy <= abcdefg
按照两个总方向去分析:
(1) xxx = 000 ~ abc - 1
:对于这种情况的话yyy
的取值为:000 ~ 999
,故这种的总情况数为:abc * 1000
(2) xxx = abc
:
(2.1) d < 1
,那么abc1yyy > abc0efg
,故这种没有符合情况的数
(2.2) d = 1
,yyy
的取值可为000 ~ efg
,故这种的总情况数为:efg + 1
(2.3) d > 1
,yyy
的取值可为000 ~ 999
,故这种的总情况数为:1000
下面开始 特判:
上述例子中,我们用的是1
去举例,那么我们接下来去考虑最特殊的数字:0
0
不会影响上述count
函数实现中的 (2) 部分,只会对 (1) 部分产生影响:因为不可以出现形如0123
这种数字
还是上述案例,我们对于 (1) xxx
的取值范应为001 ~ abc - 1
,这样做就可以防止出现前导0
,我们在依次遍历每一位上0
出现的个数的时候,因为首位不能为0
,故for循环可以写成:for (int i = n - 1 - !x; i >= 0; i -- )
AC代码
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
const int N = 10;
int get(vector<int> num, int l, int r)
{
int res = 0;
for (int i = l; i >= r; i -- ) res = res * 10 + num[i];
return res;
}
int power10(int x)
{
int res = 1;
while (x -- ) res *= 10;
return res;
}
int count(int n, int x)
{
if (!n) return 0;
vector<int> num;
while (n)
{
num.push_back(n % 10);
n /= 10;
}
n = num.size();
int res = 0;
for (int i = n - 1 - !x; i >= 0; i -- )
{
if (i < n - 1)
{
res += get(num, n - 1, i + 1) * power10(i);
if (!x) res -= power10(i); //对 0 的特判,即减去 001 的那一种情况
}
if (num[i] == x) res += get(num, i - 1, 0) + 1;
else if (num[i] > x) res += power10(i);
}
return res;
}
int main()
{
int a, b;
while (cin >> a >> b , a)
{
if (a > b) swap(a, b); //题目中数据比较狗,可能出现 a > b 的情况,故需要特判一下
for (int i = 0; i <= 9; i ++ )
cout << count(b, i) - count(a - 1, i) << ' ';
cout << endl;
}
return 0;
}
三、时间复杂度
关于动态规划——数位统计DP的时间复杂度以及证明,后续会给出详细的说明以及证明过程,目前先鸽了。