一、算法概述
对于推荐系统(Recommend System, RS),从广义上的理解为:为用户(User)推荐相关的商品(Items)。常用的推荐算法主要有:
基于内容的推荐(Content-Based Recommendation)
协同过滤的推荐(Collaborative Filtering Recommendation)
基于关联规则的推荐(Association Rule-Based Recommendation)
基于效用的推荐(Utility-Based Recommendation)
基于知识的推荐(Knowledge-Based Recommendation)
组合推荐(Hybrid Recommendation)
在推荐系统中,最重要的数据是用户对商品的打分数据,数据形式如下所示:
U1-U5代表用户,D1-D4代表商品。我们要做的,就是根据已有的不同用户对不同商品的评价,通过推荐算法将未评价的位置的分数预测出来。
二、算法原理
矩阵分解是指将一个矩阵分解成两个或者多个矩阵的乘积。对于上述的用户-商品矩阵(评分矩阵),记为Rm×nRm×n。可以将其分解成两个或者多个矩阵的乘积,假设分解成两个矩阵Pm×kPm×k和Qk×nQk×n,我们要使得矩阵Pm×kPm×k和Qk×nQk×n的乘积能够还原原始的矩阵Rm×nRm×n:
Rm×n≈Pm×k×Qk×n=
R
^
\hat{R}
R^m×n(R。代表预测值)
Rm×n≈Pm×k×Qk×n=
R
^
\hat{R}
R^m×n
其中,矩阵Pm×kPm×k表示的是m个用户与k个主题之间的关系,而矩阵Qk×nQk×n表示的是k个主题与n个商品之间的关系。
附:矩阵乘法的计算
①损失函数
可以使用原始的评分矩阵Rm×n与重新构建的评分矩阵
R
^
\hat{R}
R^m×n之间的误差的平方作为损失函数,即:
最终,需要求解所有的非“-”项的损失之和的最小值:
利用梯度下降法的求解过程为:
●求解损失函数的负梯度:
●根据负梯度的方向更新变量:
通过迭代,直到算法最终收敛。
算法终止:每次更新完
R
^
\hat{R}
R^ 后,计算一次
l
o
s
s
loss
loss 值,若
l
o
s
s
loss
loss 值非常小或者到达最大迭代次数,结束算法。于是就得到了我们最终的预测矩阵
R
^
\hat{R}
R^。
三、算法的Python实现
import numpy as np
import math
import matplotlib.pyplot as plt
#定义矩阵分解函数
def Matrix_decomposition(R,P,Q,N,M,K,alpha=0.0002,beta=0.02):
Q = Q.T #Q 矩阵转置
loss_list = [] #存储每次迭代计算的 loss 值
for step in range(5000):
#更新 R^
for i in range(N):
for j in range(M):
if R[i][j] != 0:
#计算损失函数
error = R[i][j]
for k in range(K):
error -= P[i][k]*Q[k][j]
#优化 P,Q 矩阵的元素
for k in range(K):
P[i][k] = P[i][k] + alpha*(2*error*Q[k][j]-beta*P[i][k])
Q[k][j] = Q[k][j] + alpha*(2*error*P[i][k]-beta*Q[k][j])
loss = 0.0
#计算每一次迭代后的 loss 大小,就是原来 R 矩阵里面每个非缺失值跟预测值的平方损失
for i in range(N):
for j in range(M):
if R[i][j] != 0:
#计算 loss 公式加号的左边
data = 0
for k in range(K):
data = data + P[i][k]*Q[k][j]
loss = loss + math.pow(R[i][j]-data,2)
#得到完整 loss 值
for k in range(K):
loss = loss + beta/2*(P[i][k]*P[i][k]+Q[k][j]*Q[k][j])
loss_list.append(loss)
plt.scatter(step,loss)
#输出 loss 值
if (step+1) % 1000 == 0:
print("loss={:}".format(loss))
#判断
if loss < 0.001:
print(loss)
break
plt.show()
return P,Q
if __name__ == "__main__":
N = 5
M = 4
K = 5
R = np.array([[5,3,0,1],
[4,0,0,1],
[1,1,0,5],
[1,0,0,4],
[0,1,5,4]]) #N=5,M=4
print("初始评分矩阵:")
print(R)
#定义 P 和 Q 矩阵
P = np.random.rand(N,K) #N=5,K=2
Q = np.random.rand(M,K) #M=4,K=2
print("开始矩阵分解:")
P,Q = Matrix_decomposition(R,P,Q,N,M,K)
print("矩阵分解结束。")
print("得到的预测矩阵:")
print(np.dot(P,Q))
初始评分矩阵:
[[5 3 0 1]
[4 0 0 1]
[1 1 0 5]
[1 0 0 4]
[0 1 5 4]]
开始矩阵分解:
loss=2.529256506258465
loss=1.3877265761063808
loss=1.2157986093378128
loss=1.1759370031122929
loss=1.166970403405529
得到的预测矩阵:
[[4.97823498 2.98086694 2.88980046 1.00251936]
[3.98096291 2.11915475 2.61056143 1.00070949]
[1.00253139 0.9926694 4.03255964 4.969016 ]
[0.99931173 0.8389195 3.88415261 3.98313249]
[2.52402995 1.00755381 4.98164043 3.99291049]]