2.线性模型——梯度下降

本文详细介绍了线性模型中的梯度下降法,解释了梯度的概念,展示了损失函数的推导过程,并探讨了梯度作为上升最快方向的性质。文章还讨论了学习率的重要性,提出了参数更新的公式。通过两个Python实例,演示了梯度下降法在实际问题中的应用,包括在矩阵非满秩或非正定时如何利用该方法求解最小化问题。
摘要由CSDN通过智能技术生成

梯度: 对于一个标量,也就是一维,梯度就是 + 或者 - 。平面二维向量,梯度也是一个向量,这个向量的方向就是梯度的方向。同理 N N N维,所有梯度也可以沿着变量分解成为相应的梯度分量。

线性模型——解析解我们推倒出以下公式:

损失函数: L ( f ) = ∑ i = 1 N ( y i ^ − y i ) 2 = ∑ i = 1 N ( w ⃗ ⋅ x ⃗ + b − y i ) 2 = ( y ⃗ − X ~ w ~ ⃗ ) T ( y ⃗ − X ~ w ~ ⃗ ) L(f)=\sum_{i=1}^{N}( \hat{y_i}-y_i)^2=\sum_{i=1}^{N}( \vec{w}\cdot\vec{x}+b-y_i)^2=(\vec{y}-\tilde{X}\vec{\tilde{w}})^{T}(\vec{y}-\tilde{X}\vec{\tilde{w}}) L(f)=i=1N(yi^yi)2=i=1N(w x +byi)2=(y X~w~ )T(y X~w~ ) 将其看作是关于 w ~ ⃗ \vec{\tilde{w}} w~ 的函数,那么令: J ( w ~ ⃗ ) = 1 2 N L ( f ) J(\vec{\tilde{w}})=\frac{1}{2N}L(f) J(w~ )=2N1L(f) ∂ J ( w ~ ⃗ ) ∂ w ~ ⃗ = 1 N X ~ T ( X ~ w ~ ⃗ − y ⃗ ) = 1 N ( x ~ ⃗ 1 , x ~ ⃗ 2 , ⋯ &ThinSpace; , x ~ ⃗ N ) ( [ x ~ ⃗ 1 T x ~ ⃗ 2 T ⋮ x ~ ⃗ N T ] w ~ ⃗ − y ⃗ ) \frac{\partial{J(\vec{\tilde{w}})}}{\partial{\vec{\tilde{w}}}}=\frac{1}{N}\tilde{X}^{T}(\tilde{X}\vec{\tilde{w}}-\vec{y})=\frac{1}{N}(\vec{\tilde{x}}_{1},\vec{\tilde{x}}_{2},\cdots,\vec{\tilde{x}}_{N})\left(\begin{bmatrix} \vec{\tilde{x}}_1^{T}\\ \vec{\tilde{x}}_2^{T}\\ \vdots\\ \vec{\tilde{x}}_N^{T}\\ \end{bmatrix}\vec{\tilde{w}}-\vec{y}\right) </

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值