自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(27)
  • 资源 (1)
  • 收藏
  • 关注

原创 机器视觉总结

机器视觉基础知识总结

2022-11-06 17:42:00 644 1

原创 机器学习与模式识别

机器学习与模式识别课程笔记

2022-11-01 10:47:01 357 1

原创 pdf文件如何保存指定页面?

pdf保存指定页码

2022-07-07 19:44:48 1079

原创 CPU设计实战-第四章实践任务三用前递技术解决相关引发的冲突

《CPU设计实战》第四章实践任务三用前递技术解决相关引发的冲突

2022-07-01 20:30:46 147

原创 CPU设计实战-第四章实践任务二用阻塞技术解决相关引发的冲突

《CPU设计实战》第四章实践任务二 用阻塞技术解决相关流水线冲突

2022-07-01 20:19:10 110

原创 CPU设计相关笔记

CPU设计涉及相关知识笔记

2022-07-01 17:32:47 72

原创 CPU设计实战-第四章实践任务一简单CPU参考设计调试

CPU设计实战-汪文祥

2022-06-27 21:53:20 566

原创 模拟退火算法(AI导论)

模拟退火算法基本原理个人理解,有错欢迎评论留言!毕竟也不想误人子弟!哈哈哈!基本原理概要:模拟固体加热时的粒子动能大的特定使得粒子的随机性变大,然后慢慢趋于静止的过程。通过赋予搜索过程一种时变且最终趋于零的概率突跳性,从而可有效避免陷入局部极小并最终趋于全局最优的串行结构的优化算法。...

2022-05-09 20:33:03 270

原创 蚁群算法(AI导论)

蚁群算法基本原理代码实践个人理解,有错欢迎评论留言!毕竟也不想误人子弟!哈哈哈!基本原理概要:仿照蚂蚁觅食过程中信息素的累计与挥发效应的启发式搜索算法。详细介绍:蚂蚁在运动过程中,根据各个路径上的信息素和启发信息按概率决定转移方向。在 t 时刻蚂蚁 k 选择从元素(城市)x 转移到元素(城市)y 的概率:Pxyk(t)={[τxy]α[ηxy]β∑yϵallowedk(x)[τxy]α[ηxy]β,ifyϵallowedk(x)0,其他 P_{xy}^k(t)= \begin{cases}

2022-05-09 15:21:32 90

原创 粒子群算法(AI导论)

粒子群算法基本原理代码实践基本原理概要:借助个体和群体走过的当前最优值进行迭代更新从而得到全局最优解的一种全局优化算法。必须理解的公式:vji(k+1)=w(k)vji(k)+φ1rand(0,a1)(pji−xji(k))+φ2rand(0,a2)(pjg−xji(k))v_j^{i}(k+1)=w(k)v_j^{i}(k)+\varphi_1rand(0,a_1)(p_j^{i}-x_j^{i}(k))+\varphi_2rand(0,a_2)(p_j^{g}-x_j^{i}(k))vji​(

2022-04-18 20:31:35 162

原创 vscode_c/c++极简配置教程

windows和ubuntu下的vscode配置c/c++环境极简配置教程

2022-03-25 16:28:17 1629 2

原创 Causal Intervention for Leveraging Popularity Bias in Recommendation(更文中……)

这里写目录标题Causal Intervention for Leveraging Popularity Bias in Recommendation(在推荐中利用受欢迎度偏差的因果干预)摘要1,IntroductionCausal Intervention for Leveraging Popularity Bias in Recommendation(在推荐中利用受欢迎度偏差的因果干预)用的数据集来源:Kwai(快手)、豆瓣、腾讯摘要1,流行度偏差问题:马太效应,流行度的物品更流行,不流行的物品

2022-03-08 09:08:49 140

原创 DICE model

Dice模型1,introduction2,motivation and problem overview_概述三级目录摘要:用户对流行项目的一致性可能会影响用户的真实兴趣,(消除流行偏见),例如。通过重新加权训练样本或利用一小部分无偏数据。然而,这些方法忽略了用户一致性的多样性,并且将交互的不同原因捆绑在一起作为统一表示,因此,当潜在原因发生变化时,鲁棒性和可解释性无法得到保证。用户一致性:?????通用框架的提出:DICE,可以学习在结构上分离兴趣和一致性的表示,并且可以顺利集成各种主干推荐模型

2021-09-15 19:40:12 539

原创 贝叶斯个性化推荐(BPR)

贝叶斯推荐算法的解释对应文章二级目录三级目录对应文章文章链接放在下面:刘建平贝叶斯详解二级目录三级目录

2021-07-16 20:26:53 185

原创 最大似然估计——2021-07-16

最大似然估计似然函数最大似然估计似然函数在一些非正式场合,似然和概率几乎是等价的。而在统计学中中,这是两个完全不一样的概念!在学习最大似然的前面,我们有必要先知道,何为似然?鉴于似然和概率息息相关,把他们两个放在一起对比理解是再好不过了。概率:在特定环境下某件事情发生的可能性也就是结果没有产生之前依据环境所对应的参数来预测某件事情发生的可能性。似然:根据事件的结果来判断这个事情本身的性质(参也就是某件事件发生了,那么这个事件在不同条件下发生的可能性。通过定义不难发现,这两个的结果都是一个“概率值

2021-07-16 20:23:58 117

原创 贝叶斯算法——入门篇——2021-07-15

贝叶斯算法(机器学习)提出贝叶斯(约1701-1761)Thomas Bayes,英国数学家源于贝叶斯生前为解决**“逆概”**问题而写的一篇文章,“逆概”就是逆向概率的意思,由于当时的社会背景和人们的认知局限,人们并没有对这篇文章投以肯定的目光(题外话:很多大的超前的成就是不能被当时的人们所接受的,所以大家可以大胆的去探索自己思考的东西,不要不敢发声),在它去世后,其朋友拿着这篇文章为他赢回了“曙光”。知识储备(1)正向概率与逆向概率这是贝叶斯需要解决的两个问题正向概率:在知道事物比例的情况

2021-07-15 17:53:46 169

原创 CNN卷积神经网络---2021-07-14

CNN前言卷积神经网络(1)卷积的概念【1】 卷积计算(卷积层)【2】非线性激活(2)池化层(pooling)(3)全连接层(4)训练与优化前言神经网络的概念本人之前已经写过适合小白看的博客,把链接也放在了这里。之所以会有卷积概念的提出,那他一定是在某个方面问题的解决比之前简单的神经网络更有优势,就像达尔文说的那样:“物竞天择,适者生存。”卷积神经网络优势所在:专门处理具有类似网状结构的数据,例如序列数据(可以认为是是在时间轴上有规律地采样形成的一维网格)和图像数据(可以看作是二维的像素网格)……那

2021-07-14 19:57:14 115

原创 C语言指针——2021-06-03

小白谈指针指针就是地址!!!1,指针用法指针的定义简单使用2, 指针引用数组指针就是地址!!!指针在c语言中有着举足轻重的地位,是C语言的精髓,是C语言的灵魂。这样说一点也不为过,那么指针究竟是什么呢?指针就是地址!上课的时候老师一直在强调这句话要外化于形,内化于心,说的再通俗一点就是,如果把目标访问数据当做我们的目的地,那么指针就好比是到达目的地的捷径。1,指针用法指针的定义定义指针变量时,与一般变量最大的不同就是前面会有目标访问符"∗*∗",在函数的说明语句板块你会看到不同的定义方式,如下面

2021-06-08 21:48:30 138 2

原创 三大数据集

数据集训练集验证集测试集交叉验证的概念训练集针对某个模型函数进行训练的一个数的集合。 训练集的占比是比较大的,因为要获得“学习经验”,就应该有大量的练习。就好比你想考出凡尔赛那样成绩的高度,你就要有我在刷题;我在去买资料的路上;我在思考刚刚的问题;……的状态,量变到质变验证集验证训练过后的函数模型能不能较好地去完成某个功能的集合。验证集的出现:(1)检查函数模型是否出现过拟合的情况(过拟合是指函数模型仅仅只是对训练集数据有很好的预测能力;)所以一般在使用验证集的时候就会对函数中的参数进行优化;

2021-05-05 15:55:19 128

原创 神经网络基础篇

神经网络basics神经网络1,神经网络的引入2,神经网络的思想一,神经网络的类比细节二,神经网络的几个概念1,权值神经网络1,神经网络的引入提及神经网络大家第一想到的肯定是生物神经网络了,神经元,轴突,树突,突触…一时间很多名词就会袭击我们的大脑,那么接下来讲的就是人工神经网络,类比得到,所以本博主会在通篇加入生物神经网络的相关内容来帮助大家理解。先放一个图大家类比一下:这里我们要实现的就是大脑的功能是这???NoNoNo!!! 不要被这么多复杂的“成品”所吓到,其实秉着 一生二,二生三,三生

2021-05-04 20:20:38 273

原创 k-means 算法 2021-04-25

K_means算法简介二级目录三级目录简介k_means?刚接触的时候,感觉是很陌生的。不过不要怕,有我这个Z小白来解释,相信会对你有所裨益。k-means算法就是一种机器学习常用的聚类算法,当然在环境学,生物学,天文学…等各个领域都有他的身影。他要解决的问题我们可以用图像形象的表示一下:二级目录三级目录...

2021-04-25 17:07:00 129

原创 KNN算法 2021-04-21

KNN算法KNN(K-nearst neighbors)二级目录三级目录KNN(K-nearst neighbors)KNN算法的全称为K近邻算法,结合英文不难理解,就是找到k个最邻近的数据来聚合成一类,然后把这一类作为具有某种特征的二级目录三级目录...

2021-04-24 21:15:10 117 2

原创 矩阵分解-梯度下降

基于梯度下降的矩阵分解一,矩阵分解能够解决的推荐问题二,矩阵分解1,矩阵分解的优势2,矩阵分解的思想3,基于矩阵分解的推荐算法步骤3.14,实例说明4.1 例子一,矩阵分解能够解决的推荐问题假如你得到了用户对商品的打分数据,数据形式如下:Item1I2I3I4User153-1U24--1U311-5U41--4U5-154二,矩阵分解1,矩阵分解的优势矩阵的分解,其实有三种方法。1.特征值分解(Ei

2021-04-17 17:24:57 168

原创 线性回归(梯度下降)2021-04-16

线性回归(+gradient desent)线性回归基本思想1,线性回归1.1线性回归概念1.2 回归参数的求解方法1.21 最小二乘法(least square method)1.22 梯度下降法(gradient descent,GD)2,一元线性回归实例2.1 手工推导2.2 代码实现线性回归基本思想线性回归是我们高中学习的线性回归的思想延伸,所以本人感觉不是很难接受。线性回归是通过若干个相关的离散的点来模拟出的能够预测(由自变量改变引起)因变量的线性图线的一种思想和方法。1,线性回归1

2021-04-16 17:39:10 136

原创 IT职业简介

IT小白的福利一,职业1,技术类2,产品类3,设计类4,运营类5,市场与销售6,职能7,金融类二,职业前景分析一,职业为什么要更这篇博客呢?是因为很多像我一样的IT小白在进入行业时,进行学习时都会很迷茫,我们过着属于我们的程序员节,却不知道自己将来该何去何从,下面就是重点了,博主整理了一些有关IT的一些职业分类和前景表,来供大家了解一下。(在此声明:图片大都来自网络)1,技术类2,产品类3,设计类4,运营类5,市场与销售6,职能7,金融类二,职业前景分析虽然

2021-04-16 14:28:55 167 2

原创 梯度下降--详解

梯度下降梯度下降1.1 方向导数1.2梯度1.3 梯度下降1.31 基本思想1.32 核心公式1.33 一般步骤1.4 实例1.411.42 代码前言,本人关于梯度下降的见解会随着鄙人认识的深浅进行更新,欢迎小白和我一起探寻,也欢迎大佬们指教一二。梯度下降梯度?第一次接触这个词有没有让你想到“梯子”呢,梯度其实也是用于下高度而引出的梯度,但不是下楼梯,更为形象的比喻为下山,站在山峰之巅,如何快速地下到山脚?就是我们要研究的梯度下降问题。1.1 方向导数要说明梯度下降,不可避免地要引入梯度的有关概

2021-04-15 16:55:37 276

原创 推荐算法---协同过滤2021-4-13

协同过滤前言一、什么是协同过滤?(Collaborative Filtering)二、协同过滤涉及的相关性强弱的计算(相似度)三、具体分类1.基于用户的协同过滤(UserCF)1.1实例解说UserCF1.112.读入数据总结欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新

2021-04-13 22:13:02 850 8

计算机原理与设计:Verilog HDL版 李亚民著

本教科书讲述计算机原理、计算机设计以及如何用Verilog HDL实现设计。主要内容包括:计算机基础知识及性能评价方法;数字电路及Verilog HDL简介;计算机加、减、乘、除及开方的各种算法(包括Wallace Tree快速乘法器和Newton-Raphson及Goldschmidt除法和开方算法)及其VerilogHDL实现;指令系统结构和ALU及多端口寄存器堆的 Verilog HDL 设计;单周期、多周期和流水线CPU的Verilog HDL 设计;精确中断和异常处理及其电路实现;浮点算法及带有浮点部件FPU的流水线CPU的Verilog HDL 设计;多线程CPU的 Verilog HDL设计;存储器、Cache和虚拟存储器管理以及带有Cache、TLB和FPU的CPU设计;多核CPU的 Verilog HDL 设计;异步通信接口UART、PS/2键盘与鼠标接口、视频图像阵列VGA接口、I2C串行总线接口和PCI并行总线接口的Verilog HDL设计;高性能计算机及互联网络设计。书中的Verilog HDL源代码基本上都附有功能仿真波形,以便加深对计算机原理的理解和对计算

2022-06-28

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除