堆优化dijkstra

 在介绍堆优化的dijkstra算法之前,先介绍一种存储图的数据结构——链式前向星:

链式前向星其实就是静态建立的邻接表,时间效率为O(m),空间效率也为O(m)。遍历效率也为O(m)。

struct Edge{
    int to, w, next;//终点,边权,同起点的上一条边的编号
}edge[maxn];//边集
int head[maxn];//head[i],表示以i为起点的第一条边在边集数组的位置(编号)
void init(){//初始化
    for (int i = 0; i <= n; i++) head[i] = -1;
    cnt = 0;
}
  • 链式前向星存的是以【1,n】为起点的边的集合
  • Next,表示与这个边起点相同的上一条边的编号。
  • head[ i ]数组,表示以 i 为起点的最后一条边的编号。
  • head数组一般初始化为-1,遍历时以edge[ j ].next为 -1做为终止条件。

遍历函数是这样的:

for(int i = 1; i <= n; i++)//n个起点
    {
        cout << i << endl;
        for(int j = head[i]; j != -1; j = edge[j].next)//遍历以i为起点的边
        {
            cout << i << " " << edge[j].to << " " << edge[j].w << endl;
        }
        cout << endl;
    }

第一层for循环是找每一个点,依次遍历以【1,n】为起点的边的集合。第二层for循环是遍历以 i 为起点的所有边,k首先等于head[ i ],注意head[ i ]中存的是以 i 为起点的最后一条边的编号。然后通过edge[ j ].next来找下一条边的编号。我们初始化head为-1,所以找到你最后一个边(也就是以 i 为起点的第一条边)时,以edge[ j ].next为 -1做为终止条件。

dijkstra算法:

  1. 初始时, S只包含起点s;U包含除s之外的其他顶点,且U中顶点的距离为“起点s到该顶点的距离”【例如:U中顶点v的距离为(s, v)的长度,然后s和v不相邻,则v的距离为∞】。
  2. 从U中选出“距离最短的顶点k”,并将顶点k加入到S中;同时,从U中移除顶点k。
  3. 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其他顶点的距离;例如,(s, v)的距离可能大于(s, k)+(k, v)的距离。
  4. 重复步骤2和3,直到遍历完所有顶点。

在这里可以发现第2步要选出“距离最短的顶点k”,这里如果用最小堆优化,时间复杂度会降低很多,如果采用邻接矩阵存储边,每次遍历边还是会使时间复杂度居高不下,而邻接表不好写但效率好,所以这里用链式向前星存储边。用最小堆优化后时间复杂度为O((n+m)logn),这里发现在稠密图中接近n^2,所以不必用堆优化。

所以dijkstra算法适用于稀疏图。

下面附上一道洛谷原题:CF20C Dijkstra?

给出一张图,请输出其中任意一条可行的从点 1到点 n的最短路径。

输入输出格式

输入格式

第一行:两个整数n,m,分别表示点数和边数

接下来m行:每行三个整数u,v,w,表示u和v之间连一条边权为w的双向边。

输出格式

一行:一个可行的路径,如果不存在这种路径输出-1

2<=n<=10^5,0<=m<=10^5

输入输出样例

输入 

5 6
1 2 2
2 5 5
2 3 4
1 4 1
4 3 3
3 5 1

输出 

1 4 3 5 

 不多说了,直接上代码

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <cstring>
using namespace std;
typedef long long LL;
const int N = 2e5 + 5;
int n, m;
struct edge { int to, nxt, val; } e[N];
int cnt, head[N];
void add(int from, int to, int val) {
	e[++ cnt].to = to;
	e[cnt].val = val;
	e[cnt].nxt = head[from];
	head[from] = cnt;
}
int dis[N], vis[N], pre[N];
LL ans[N];
void spfa() {
	for(int i = 1;i <= n;i ++) dis[i] = 1e15;
	queue <int> q; q.push(1);
	dis[1] = 0; vis[1] = 1;
	while(! q.empty()) {
		int tp = q.front(); q.pop();
		vis[tp] = 0;
		for(int i = head[tp]; i ;i = e[i].nxt) {
			int to = e[i].to, val = e[i].val;
			if(dis[to] > dis[tp] + val) {
				dis[to] = dis[tp] + val;
				pre[to] = tp;
				if(! vis[to]) q.push(to), vis[to] = 1;
			}
		}
	}
}
signed main() {
	cin >> n >> m;
	for(int i = 1, a, b, l;i <= m;i ++) {
		cin >> a >> b >> l;
		add(a, b, l); add(b, a, l);
	}
	spfa();
	if(dis[n] == 1e15) { cout << "-1"; return 0; }
	int t = n, tot = 0;
	while(t != 1) {
		ans[++ tot] = t;
		t = pre[t];
	}
	ans[++ tot] = 1;
	for(int i = tot; i ;i --) cout << ans[i] << " ";
	return 0;
}

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
C++优化Dijkstra算法是一种用于求解单源最短路问题的算法,它是Dijkstra算法的一种优化。在Dijkstra算法中,我们通过一个数组记录节点到起点的距离,并通过一个集合记录已经确定最短路的节点,然后每次从集合中选择距离起点最近的节点进行松弛操作,直到集合为空为止。但是这种方法的时间复杂度是O(n^2)的,无法处理大规模图的问题。 优化Dijkstra算法则是通过使用优化选择距离起点最近的节点的过程,从而将时间复杂度降低到O(mlogn),其中n为节点数,m为边数。具体实现过程如下: 1. 初始化:将起点加入中,距离为0,其他节点距离为无穷大。 2. 取出顶元素:每次从中取出距离起点最近的节点,将其标记为已经确定最短路。 3. 松弛操作:遍历与该节点相邻的所有节点,如果当前节点到起点的距离可以通过该节点更新,则更新该节点到起点的距离,并将该节点加入中。 4. 重复步骤2和3,直到为空或者顶元素为终点。 下面是C++代码实现: ```c++ #include <bits/stdc++.h> using namespace std; const int N = 1e5 + 5; const int INF = 0x3f3f3f3f; int n, m, s, t; int head[N], cnt = 0; int dis[N], vis[N]; struct Edge { int v, w, nxt; } e[N << 1]; struct Node { int u, d; bool operator < (const Node &rhs) const { return d > rhs.d; } }; void add_edge(int u, int v, int w) { e[++ cnt] = (Edge) {v, w, head[u]}; head[u] = cnt; } void dijkstra() { memset(dis, 0x3f, sizeof(dis)); memset(vis, 0, sizeof(vis)); priority_queue<Node> q; q.push((Node) {s, 0}); dis[s] = 0; while (!q.empty()) { int u = q.top().u; q.pop(); if (vis[u]) continue; vis[u] = 1; for (int i = head[u]; i; i = e[i].nxt) { int v = e[i].v, w = e[i].w; if (dis[v] > dis[u] + w) { dis[v] = dis[u] + w; if (!vis[v]) q.push((Node) {v, dis[v]}); } } } } int main() { cin >> n >> m >> s >> t; for (int i = 1; i <= m; i ++) { int u, v, w; cin >> u >> v >> w; add_edge(u, v, w); add_edge(v, u, w); } dijkstra(); cout << dis[t] << endl; return 0; } ``` 其中,priority_queue<Node> q;表示使用小根来存储节点,Node结构体中的u表示节点编号,d表示该节点到起点的距离。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值