问题描述
现在各大oj上有n个比赛,每个比赛的开始、结束的时间点是知道的。
yyy 认为,参加越多的比赛,noip就能考的越好(假的)。
所以,他想知道他最多能参加几个比赛。
由于yyy是蒟蒻,如果要参加一个比赛必须善始善终,而且不能同时参加2个及以上的比赛。
输入格式
第一行是一个整数n,接下来n行每行是2个整数 a,b (a<b),表示比赛开始、结束的时间。
输出格式
一个整数最多参加的比赛数目。
输入输出样例
输入 #1
3
0 2
2 4
1 3
输出 #
2
说明/提示
对于20%的数据,n≤10。
对于50%的数据,n≤10^3。
对于70%的数据,n≤10^5 。
对于100%的数据,1≤n≤10^6 ,0<=a<b<=10^6。
问题分析
经典的贪心问题,构造一个结构体,每个结构体里都有比赛的开始时间和结束时间。我们只需要先根据比赛结束时间进行从小到大的排序,找出结束时间最小的那个比赛作为第一场比赛(这样对后面比赛的影响最小),剩下的比赛用开始时间与前一场比赛的结束时间进行比较,开始时间比前一场比赛的结束时间大并且距离前一场比赛时间最近的比赛即是后一场比赛,依次寻找,最后便可以得出最多参加的比赛数目。
代码实现
#include <iostream>
#include <algorithm>
using namespace std;
bool cmp(const struct line& a, const struct line& b);
struct line
{
int left; //比赛开始时间
int right; //比赛结束时间
};
int main()
{
int n, ans = 1;
cin>>n;
line* a = new line[n];
for (int i = 0; n > i; i++)
cin >> a[i].left >> a[i].right;
sort(a, a + n, cmp); //按照比赛结束时间从小到大排序
int t = a[0].right; //找出第一场比赛
for (int i = 1; n > i; i++)
if (a[i].left >= t) //如果当前比赛的开始时间比前一场比赛的结束时间大,当前比赛即为后一场比赛
{
t = a[i].right; //更换比赛的结束时间
ans++;
}
cout << ans;
return 0;
}
bool cmp(const line& a, const line& b)
{
return a.right < b.right;
}
运行结果
总结
这道题是典型的贪心题,整个题目可以等价为找出所给出线段中无公共部分线段的最大数目,是比较基础的题型。