深度学习
大牛牛+
这个作者很懒,什么都没留下…
展开
-
深度学习:非标量调用backward()求梯度实现原理、detach()
计算图非标量调用backward()求梯度x = torch.arange(4.0)x.requires_grad = Truey = x * x方法1:通过y.sum().backward()调用反向传播y.sum().backward()print(x.grad) sum为y.sum()把x带入得 x.grad为(0,2,4,8)方法2:传入shape和x一样的ones参数y.backward(torch.ones(x.shape))...原创 2022-03-26 10:56:09 · 2512 阅读 · 1 评论 -
深度学习 自信息、熵、交叉熵
熵(entropy):无损编码事件信息的最小平均编码长度对每个可能性事件进行编码,计算他们的编码长度,最短的为熵类似哈夫曼树,编码不能有二义性: 例:四种事件的编码分别为 10、11、 1、110,前两种编码和后两种编码都可组成1110的编码段编码方式 猫(50%) 狗(25%) 猪(12.5%) 兔(12.5%) 编码长度 方法1 10 110 0 111 2x50%+3x25%+1x12.5%+3x12.5%=...原创 2022-03-25 12:41:00 · 1398 阅读 · 0 评论 -
深度学习 反向传播backward在 随机梯度下降中的运用
以最简单的神经网络为例损失函数 损失函数为通过随机设定的w1和w2 得出的y的近似值与真实y的差距随机梯度下降(SGD)通过此公式不断更新w使w靠近真实值为当前误差关于w的梯度,梯度方向为数值(Loss)增长最快的方向所以我们沿...原创 2022-03-25 09:18:30 · 4122 阅读 · 0 评论 -
Linux系统 D2L 安装
创建一个新的Ubuntu系统# 打开终端sudo apt update //更新aptsudo apt install build-enssential //提供编译程序必要的软件包列表sudo apt install python3.8 //安装python3.8,选项全yeswegt miniconda相应版本的下载地址# 安装完成后最后一行显示Miniconda3。。。。Linux-x86_64.sh savedbash Miniconda3。。。。Linux-x86_64.原创 2022-03-22 16:24:27 · 2778 阅读 · 0 评论 -
深度学习: 矩阵求导、广播机制、按轴降维
使用列向量(若x、y为向量)和分子布局(分子不变,分母转置)原创 2022-03-24 20:36:39 · 3372 阅读 · 0 评论