文献笔记--(2020)Seismic velocity estimation: A deep recurrent neural-network approach

题目:Seismic velocity estimation: A deep recurrent neural-network approach
《用一种深度循环网络方法解决地震速度模型反演问题》
GEOPHYSICS, VOL. 85, NO. 1 (JANUARY-FEBRUARY 2020); P. U21–U29, 6 FIGS.
DOI:10.1190/GEO2018-0786.1

代码:Data associated with this research are available, and can be accessed
via the following URLs:
http://doi.org/10.5281/zenodo.3492114
https://github.com/GeoCode-polymtl/Deep_1D_velocity.git

本文基础知识应该与动校正(即NMO校正)相关,属于速度估计内容,在地震资料处理中的目的是获得准确的速度,进而获得准确的叠加剖面。

摘要

  1. 用DL解决3D的VMB问题仍然面临挑战,因为要得到一个大规模ANN的数据量。而且,针对这类复杂问题要使用哪一种网络结构也未知。
  2. 本文研究了一个简化代表性的问题——针对1D层状速度模型,根据CMP,估计一段时间内的均方根速度和层速度。
    基于相似度分析的信息,建立了一个深度网络。该网络用CNN的结果替代相似系数估计,并用RNN自动实现速度估计。采用合成数据训练网络,该网络能够识别首次反射波速度、均方根速度和层速度。
  3. 研究发现,针对含有1D层状数据模型的合成测试数据集,均方根速度和层速度能被精确估计(均方根速度的误差低于44m/s。该网络用于真实的2D海洋数据,获得精确的均方根速度以及连续的叠加剖面和层速度。
    研究表明,用深度神经网络估计速度可行,并且在合成数据上训练好的网络它同样能在真实数据上取得好效果。
  4. 1D的结果说明CNN编码器和RNN对处理复杂的2D和3D的VMB问题是有潜力的。

引言

DL近年来发展得好,达到了具有竞争力,在某些方面超越人类水平的表现.用DL解决地震图像问题越来越受到关注.截至目前,多数工作在地震解释、event检测方面.比如使用聚类分析和分类技术对盐体边界的检测,使用机器学习技术对地震结构进行标记,使用GAN对故障检测.FWI的一个显著应用是Lewis等人使用DL解释偏移图像,并建立先验速度模型.关于DL在地震解释中的文献已经非常庞大,并且正以非常快的速度扩展.

同相轴(event)指一组地震道上的属于同一个相位的振动的连线。注意,这里的相位并非物理学中的相位,在地震中常常把某个特定位置的极大值称为相位。

尽管用ML解决地震反演的应用不是新的,但是有一些用DL自动完成地震反演和处理的研究.早期研究数量很多,但是浅层全连接NN被参数数量限制,虽然能进行速度估计但没有扩展到真实地震数据集的大小.DL允许NN应用到更复杂的任务上,具有很大的输入和输出空间.研究表明,DL用于地震层析的潜力:使用相似度(?)作为输入,NN可以直接预测网格速度模型.因此,基于DL的数据驱动地震反演和成像似乎可行.

建立一个通用高效的DNN用于稳健的地震反演仍然是个挑战.一是反演需要大量的数据,这就导致训练时间比较长,对不同的地下结构进行测试花销较大.本文研究一个易于解决的基本问题,与地震反演有足够的相似性,能带来一些启发.讨论的问题是针对平坦层状介质的速度模型,估计一段时间的均方根速度和层速度.这个问题用相似度分析来处理,它一般用于得到连续的叠加剖面.相反,本文目的是无需计算相似度,直接从地震道中估计均方根速度.事实上,相似度是一个有损失的,不可逆的变换,它删除与地震反演相关的振幅和相位信息.这也是现代地震反演处理依赖于整个波形记录,将全波形作为基于NN方法输入的一个原因.

通过研究1D的速度估计问题,本文解决两个问题.
(1) 针对直接从地震波中估计速度这个问题,哪种网络结构是合适的
(2) 是否存在在合成数据上训练好的网络,在真实数据上测试效果也表现良好
首先,陈述问题并讨论与相似度分析的联系;其次,展示网络结构和训练方法;最后,在不同测试数据集上(1D合成速度模型+轻微倾斜的2D合成速度模型+真实的海洋地震2D列)来评估网络效果.

方法

问题陈述:

假设地球是平坦连续的速度层,求一段时间内的均方根速度.这是基于相似性的传统速度分析背后的基本假设.在某种意义上,我们可以把问题公式化为用NN来进行相似速度分析.

对于相似度分析,我们假设水平层状介质,这意味着在共中心点( CMP )道集上的反射在短偏移距下将遵循双曲线,由这个正常时差方程(NMO)给出:
t 2 = t 0 2 + x 2 v r m s 2 (1) t^2=t_{0}^2+\frac{x^2}{v_{rms}^2}\tag{1} t2=t02+vrms2x2(1)

正常时差(normal moveout)是在水平界面对界面上某点以炮检距进行观测得到的反射旅行时和以零炮检距(自激自收)进行观测得到的反射旅行时之差。是由炮检距不为零引起的时差

在这里插入图片描述

其中 t t t是到炮检距 x x x处的往返走时(推测原点应该在反射点处,也就是中心点,所以炮检距是2倍的偏移距.), t 0 = 2 z v r m s t_{0}=\frac{2z}{v_{rms}} t0=vrms2z是零偏移距的双程反射时间(就是自激自收), z z z是接收器的深度, v r m s v_{rms} vrms是均方根速度:
v r m s = ∑ i = 1 N v i 2 Δ t i ∑ i = 1 N Δ t i (2) v_{rms}=\sqrt{\frac{\sum_{i=1}^{N}{v_{i}^{2}\Delta{t_{i}}}}{\sum_{i=1}^{N}{\Delta{t_{i}}}}}\tag{2} vrms=i=1NΔtii=1Nvi2Δti (2)

均方根速度(Root Mean Square Velocity):在水平层状介质中,把反射波时距曲线近似看成双曲线求出的速度就是均方根速度。(把层状介质假想成某种均匀介质)
其意义可以这样描述:把各层速度值的平方,按时间取加权平均值,再开根号。其中速度较高的层所占比重比较大,表明这种近似在一定程度上考虑了射线的偏折。

其中 v i v_{i} vi是层速度(分子是速度平方表示能量), Δ t i \Delta{t_{i}} Δti是在第 i i i地层的单程走时.NMO校正包括去除反射走时对偏移距的依赖性.
d NMO ( t , x ) = d ( t 0 2 + x 2 v r m s 2 , x ) (3) d^{\text{NMO}}(t,x)=d(\sqrt{t_{0}^{2}+\frac{x^{2}}{v_{rms}^{2}}},x)\tag{3} dNMO(t,x)=d(t02+vrms2x2 ,x)(3)

(?右式的 t t t应该是 t 0 t_{0} t0吧)

其中 d d d是原始CMP道集, d NMO d^{\text{NMO}} dNMO是校正后的CMP道集.在用正确的均方根速度 v r m s v_{rms} vrms进行NMO校正后,理想情况下反射同相轴应该形成一条直线(在时距曲线上看同相轴的连线).

同相轴(coherent event)是在地震剖面上观测到的具有一定连续性和相似性的反射或折射事件。好像是一种定位作用,反映对同一地下结构的观测信息。
(对极性不太理解,比如说“如果介质的性质在不同方向上是对称的,那么同相轴的正负极性数目也可能相同,相似度为0”—之前看说黑色表正极,白色表负极(或者反过来一样的),这振动曲线肯定有正有负嘛?那到底怎么看极性的数目?想象不出来此情况炮面的样子)

在这里插入图片描述

通过搜索NMO校正后对齐同相轴的速度,可以找到正确的速度.这种对齐可以用相似度来衡量,定义为:
S t = ∑ i = t − l i = t + l ( ∑ j = 1 j = N x d i j NMO ) 2 ∑ i = t − l i = t + l ∑ j = 1 j = N x ( d i j NMO ) 2 (4) S_{t}=\frac{\sum_{i=t-l}^{i=t+l}(\sum_{j=1}^{j=N_{x}}d_{ij}^{\text{NMO}})^{2}}{\sum_{i=t-l}^{i=t+l}\sum_{j=1}^{j=N_{x}}(d_{ij}^{\text{NMO}})^{2}}\tag{4} St=i=tli=t+lj=1j=Nx(dijNMO)2i=tli=t+l(j=1j=NxdijNMO)2(4)
对于 N x N_{x} Nx地震道,采集信号的窗口长度是 l l l, d i j NMO d_{ij}^{\text{NMO}} dijNMO是指 d NMO ( t , x ) d^{\text{NMO}}(t,x) dNMO(t,x)的离散采样点.
也就是说,一个炮检距对应一个地震道.一共有 N x N_{x} Nx个地震道.

通过计算在测试速度范围内CMP道集的相似度,基于相似度的处理能得到均方根速度剖面.将一个CMP道集 d ( t , x ) d(t,x) d(t,x)视作一个尺寸为 N t × N x × 1 N_{t}\times N_{x}\times 1 Nt×Nx×1的张量,相似度分析是一个张量变换,包括以下步骤:

  1. 构建表达式: 对每个 N v N_{v} Nv测试速度,根据式3计算出NMO校正后的道集,得到大小为 N t × N x × N v N_{t} \times N_{x} \times N_{v} Nt×Nx×Nv的张量.
  2. 数据约简: 对每个测试速度和时间样本,根据式4计算NMO校正道集的相似度,得到大小为 N t × 1 × N v N_{t} \times 1 \times N_{v} Nt×1×Nv的张量.(固定激发点-接受点位置)
  3. 速度解码: 通过从相似度中拾取每个反射同相轴的极大值位置, 建立均方根速度剖面,得到大小为 N t × 1 × 1 N_{t} \times 1 \times 1 Nt×1×1的张量.(固定激发点-接受点位置,以及测试速度)

两个副产品也是相似度分析工作流程的结果: 首次反射波的识别和从均方根速度估计层速度的可能性。因此,我们提出了如下问题。
输入: 给定一个CMP道集
输出
1 ) 首次反射波的到时;
2 ) 时间上的均方根速度剖面;
3 ) 时间上的层速度剖面.

小结:对式2和式4的理解:
式2–由层速度求出均方根速度(也叫叠加速度)
式4–以自激自收的时间 t 0 t_{0} t0为中心,l为时窗长度采样,由地震道的信号振幅计算相似系数,由最大相似系数确定校正速度。(相似系数作为一类动校正准则,把时距曲线的双曲同相轴校正水平)

相似速度分析(semblance velocity analysis)是一种偏移速度分析方法,通过对偏移后图像的相似度进行精确测量,达到自动从地震数据中获取速度模型的目的。其中比较著名的方法是微分相似优化方法(Symes和Carazzone 于1991年提出的),它使用成像道集的平坦度作为度量。

最大相似度表示对每个地震同相轴提供最佳拟合的速度。
如果扫描窗口内的 正负极性的数目 \red{正负极性的数目} 正负极性的数目相同,则方程(4)提供的相似度为零。这意味着,虽然存在地震同相轴,但极性的变化使得该同相轴在速度谱中无法检测。

基于神经网络的分析:

用NN实现把重要的物理直觉->(incorporate)传统的相似度分析

Step1:建立表达式
输入:CMP道集(大小 N t × N x × 1 N_{t}\times N_{x}\times 1 Nt×Nx×1
输出:多个NMO校正道集(32个特征函数)
相似度的作用是,作为一个特征来选择速度。
一个【CNN层】表示为
y t x j = max ⁡ ( 0 , ∑ i = 1 C i ∑ p = 1 L t ∑ q = 1 L x W p q i j x t + p , x + q , i + b j ) (5) y_{t x j}=\max \left(0, \sum_{i=1}^{C_{i}} \sum_{p=1}^{L_{t}} \sum_{q=1}^{L_{x}} \mathbf{W}_{p q i j} x_{t+p, x+q, i}+b_{j}\right)\tag{5} ytxj=max(0,i=1Cip=1Ltq=1LxWpqijxt+p,x+q,i+bj)(5)
其中, x x x输入层,大小 N t × N x × C i N_{t}\times N_{x}\times C_{i} Nt×Nx×Ci y y y是输出层,大小 N t × N x × C o N_{t}\times N_{x}\times C_{o} Nt×Nx×Co W W W是权重矩阵(即过滤层),大小 L t × L x × C i × C o L_{t}\times L_{x}\times C_{i}\times C_{o} Lt×Lx×Ci×Co b b b大小是 C o C_{o} Co。激活函数是RELU。训练过程就是优化权重 W W W和偏置 b b b
【编码部分】:4个连续的CNN层:
15 × 1 × 1 × 16 15\times 1\times 1\times 16 15×1×1×16
1 × 9 × 16 × 16 1\times 9\times 16\times 16 1×9×16×16
15 × 1 × 16 × 32 15\times 1\times 16\times 32 15×1×16×32
1 × 9 × 32 × 32 1\times 9\times 32\times 32 1×9×32×32
第一个CNN的特征函数部分由1到32,逐渐增加。
编码由7次相同的CNN(大小 15 × 3 × 32 × 32 15\times 3\times 32\times 32 15×3×32×32)来完成。
最后一步,增加网络感受野(因为反射双曲线可以越过道集在大量时间样本上传播)

Step2:数据约简
用RCNN实现降维。
计算每个NMO校正道的相似系数。即数据大小:
N t × N x × N v N_{t}\times N_{x}\times N_{v} Nt×Nx×Nv-> N t × 1 × N v N_{t}\times 1\times N_{v} Nt×1×Nv.
用RCNN网络实现数据约简的效果已被证实。
RCNN网络架构中,循环用相同的CNN过滤层,大小为 1 × 2 × 32 × 32 1\times 2\times 32\times 32 1×2×32×32,步长是2(没看懂解释)
一次卷积,偏移距维度降低2倍。直至维度降到1,得到 N t × 1 × 32 N_{t}\times1\times 32 Nt×1×32大小的张量。
不同于固定输出和输入大小的矩阵乘法,比如全连接层。这种数据约简的优点是适用于不同数量的偏移距。(理解得不好~)

Step3:速度解码
相似速度分析的最后一步是拾取最大值,以建立速度剖面,从而把速度降维至1.,即:
N t × 1 × N v N_{t}\times 1\times N_{v} Nt×1×Nv-> N t × 1 × 1 N_{t}\times 1\times 1 Nt×1×1.
真实的均方根速度 v r m s v_{rms} vrms->服从合理界限的层速度 v i n t v_{int} vint
输入:固定偏移距的多个双曲线轨迹 N t × 1 × N v N_{t}\times 1\times N_{v} Nt×1×Nv
输出:首次反射波+均方根速度+层速度
其中,
首次反射波:对应一个二分类问题。用具有 1 × 1 × 32 × 2 1\times 1\times 32\times 2 1×1×32×2的CNN层输出一个大小为 N t × 1 × 2 N_{t}\times 1\times 2 Nt×1×2的张量;(最后一个维度包含了每个类的分类分数 R p r e d R_{pred} Rpred。一起区分首次反射和多次波,使NN对多次波的存在具有鲁棒性)
v r m s v_{rms} vrms v i n t v_{int} vint用RNN(LSTM)预测的一个重要原因是网络具有从随机序列中预测的结果保持一致性的特点.
均方根速度:记忆细胞1(具有32个元素的向量)

sigmoid函数:Z->(0,1),适用于二分类
softmax函数:Z->(0,1),适用于多分类,但不适合多标签(即只能一条数据的决策唯一,不是多决策的)

训练网络

NN的特点是需要成千上万的带标签数据集.对于地震处理来说,地震资料(即CMP道集)虽然很多,但是带标签的CMP道集(即其对应的速度模型)并不多.这是对地震数据使用NN的难点.因此,往往在合成数据上训练网络,但是实际应用效果并不能保证.本文贡献就是用实际效果说明,尽管在合成数据上训练,NN仍然在真实数据上表现良好。
(一)生成标记数据

  • 如何生成训练集(层状速度模型):
  1. 使用有限差分程序;
  2. 吸收边界条件(目的是防止生成的道集中出现多次波,这符合工业实践)
  3. 一阶和二阶导数高斯小波建模
  4. 随机相位旋转
  • 生成的40000个速度模型(按照最小层数分成4个子集:5/10/30/50):
  1. 2D横向均匀各向同性
  2. 速度:1300-4000 m/s
  3. 频率:21 ~ 31 Hz
  4. 炮检距:470 m-4075 m
  5. 最大时间为8 s
  • CMP道集和标签
  1. 时间采样 N t = 2000 N_{t}=2000 Nt=2000,地震道 N x = 72 N_{x}=72 Nx=72,采样时窗 l = ( 1 / 4 f m a x ) Δ t l=\frac{(1/4f_{max})}{\Delta{t}} l=Δt(1/4fmax)
  2. 由式(2)得均方根速度作标签
  3. 由分段函数 R t = { 1  if  t 0 i − l < t < t 0 i + l ,  for  i ∈ P 0  otherwise  R_{t}=\left\{\begin{array}{ll} 1 & \text { if } t_{0}^{i}-l<t<t_{0}^{i}+l, \text { for } i \in P \\ 0 & \text { otherwise }\end{array}\right. Rt={10 if t0il<t<t0i+l, for iP otherwise 一次反射波作标签

(二)损失函数
总损失 L = α 0 L 0 + α 1 L 1 r m s + α 2 L 2 r m s + α 3 L 1 i n t + α 4 L 2 i n t , (15) L=\alpha_{0} L_{0}+\alpha_{1} L_{1}^{\mathrm{rms}}+\alpha_{2} L_{2}^{\mathrm{rms}}+\alpha_{3} L_{1}^{\mathrm{int}}+\alpha_{4} L_{2}^{\mathrm{int}},\tag{15} L=α0L0+α1L1rms+α2L2rms+α3L1int+α4L2int,(15)包括5小部分,3大部分:

  1. 分类任务–交叉熵函数 L 0 = − ∑ n = 1 N t ∑ j = 1 2 p n j log ⁡ q n j L_{0}=-\sum_{n=1}^{N_{t}} \sum_{j=1}^{2} p_{n j} \log q_{n j} L0=n=1Ntj=12pnjlogqnj
  2. 速度误差 ℓ 2 \ell^{2} 2 L 1 r m s ∣  int  = ∥ v pred  r m s ∣ i n t − v true  r m s ∣ i n t ∥ 2 2 L_{1}^{\mathrm{rms} \mid \text { int }}=\left\|v_{\text {pred }}^{\mathrm{rms} \mid \mathrm{int}}-v_{\text {true }}^{\mathrm{rms} \mid \mathrm{int}}\right\|_{2}^{2} L1rms int = vpred rmsintvtrue rmsint 22
  3. 使速度剖面平滑–速度偏导误差 ℓ 2 \ell^{2} 2 L 2 r m s ∣ i n t = ∥ ∂ t v pred  r m s ∣ i n t − ∂ t v true  r m s ∣ i n t ∥ 2 2 L_{2}^{\mathrm{rms} \mid \mathrm{int}}=\left\|\partial_{t} v_{\text {pred }}^{\mathrm{rms} \mid \mathrm{int}}-\partial_{t} v_{\text {true }}^{\mathrm{rms} \mid \mathrm{int}}\right\|_{2}^{2} L2rmsint= tvpred rmsinttvtrue rmsint 22

正则化:就是在损失函数的基础上添加先验,以防止过拟合,提高泛化性

交叉熵损失函数是用概率分布表示“用预测q近似真实p时”所需的额外信息量(交叉熵是p,q间信息差异的一种度量)通过最小化该损失函数(预测结果与真实标签之间的距离)来优化模型参数。

(三)训练策略

  1. 层次化训练策略(每一层用启发式-> α i \alpha_{i} αi是通过试错得到网络具有合理收敛速度的参数),分成3个阶段(Adam优化器,每批处理CMP40个):
    (1)phase0–识别反射波–1000次迭代
    α 0 = 0.95 , α 1 = 0 / 05 , α 2 = 0 , α 3 = 0 , α 4 = 0 \alpha_{0}=0.95,\alpha_{1}=0/05,\alpha_{2}=0,\alpha_{3}=0,\alpha_{4}=0 α0=0.95,α1=0/05,α2=0,α3=0,α4=0
    (2)phase1–训练均方根速度–10000次迭代
    α 0 = 0.1 , α 1 = 0.85 , α 2 = 0.05 , α 3 = 0 , α 4 = 0 \alpha_{0}=0.1,\alpha_{1}=0.85,\alpha_{2}=0.05,\alpha_{3}=0,\alpha_{4}=0 α0=0.1,α1=0.85,α2=0.05,α3=0,α4=0
    (3)phase2–训练层速度、均方根速度–10000次迭代
    α 0 = 0.1 , α 1 = 0.45 , α 2 = 0.05 , α 3 = 0.35 , α 4 = 0.05 \alpha_{0}=0.1,\alpha_{1}=0.45,\alpha_{2}=0.05,\alpha_{3}=0.35,\alpha_{4}=0.05 α0=0.1,α1=0.45,α2=0.05,α3=0.35,α4=0.05
    效果:合理的时间内,实现低误差

启发式=基于经验调整模型的参数

  1. 集成学习:按照随机权重初始化、看到训练样本顺序的不同(Boosting),训练16个基础模型(NN)。
    效果:降低泛化误差,增强NN鲁棒性

常用的集成学习方法包括:
Bagging:使用自助采样方法,从原始数据集中随机选择多个子样本并使用不同的基础模型进行训练。每个基础模型都是独立训练的,并且有权利投票决定最终结果。
Boosting:按顺序依次训练多个基础模型,每个基础模型在之前基础模型训练完毕之后所得到的“残差”(作为估计速度变异性和稳定性的一个度量)上进行训练,最终通过加权平均来确定最终结果。
Stacking:将多个基础模型的输出结果作为新的特征,再用这些特征去训练另外一个模型,称为元学习器(Meta Learner)或最终模型(Final Model)。

结果

1D合成数据

设计:
测试数据:1600个1D层状速度合成模型,3个阶段(对应于上述训练的3个阶段)
(注:但训练时不会看见测试数据)
由于在相同分布的数据上训练,所以训练的结果能反映NN的上界(即能发挥的最好预测效果)

结果:(从输出的3个结果分别分析,预测效果还可以)
图2(a):各阶段损失函数随训练次数(高达20次)的变化。
由于每个阶段的损失函数不同,它们的大小不能轻易比较。然而,值得注意的是,在这三种情况下,训练误差在前几个epoch之后下降得相当缓慢。
图2(b):均方根速度的预测误差。可以看出,在测试集上所有epoch的预测误差都在减小,这意味着我们没有过度拟合训练集。
图2(c):层速度的预测误差。直到phase 2,均方根误差才减小.这是因为没有对前两个阶段的层速度进行训练,

Epoch是指将整个数据集(training set)全部训练一次的过程。即,在一个Epoch中,模型遍历整个数据集进行了一次训练。一般情况下,将数据集分批送入训练,每一批称为batch,多少个batch组成一个epoch是由数据集大小和训练策略等因素决定的。

图3(a)(b)(c):输入的3个不同CMP道集
一次反射波同相轴的检测结果可知(1=正确率96.6%,错误率3.4%),NN能够对多次波有抗干扰作用(具有鲁棒性),较好地检测一次反射波。
图3(d):反映10%的预测值(两种速度/速度误差)小于该结果,
图3(e):反映50%的预测值(两种速度/速度误差)小于该结果,
图3(f):反映90%的预测值(两种速度/速度误差)小于该结果,
均方根速度->波动小(因为标准差低于平均误差),说明预测准确
层速度->比均方根速度噪声大,但仍具有较好的预测精度。即使在非常大的速度反差下,NN也能够预测尖锐的分界面。
因此,尽管在预测误差较大的区域,集合的标准差往往较大,但它不能被视为预测的不确定性。(因为集合预测的层速度标准差为91 m / s,远小于均方根速度误差323m/s。)
疑问: e n s e m b l e 怎么理解?由图 3 ( k m / s )怎么会得到误差( m / s )? \red{疑问:ensemble怎么理解?由图3(km/s)怎么会得到误差(m/s)?} 疑问:ensemble怎么理解?由图3km/s)怎么会得到误差(m/s)?
答:前面提到“集成学习”,ensemble应该是16个速度模型的集合

百分位数(Percentile)是统计学中常用的一种方法,用于表示一组数据中各个分量的相对位置。因此,如果我们想知道某个数在该数据集中所处的百分位数,只需要将该数与数据集按从小到大的顺序排序后进行比较并计算即可。
例如,10th、50th和90th percentiles是分别指数据集中排序后第10%、50%和90%的位置。换句话说,10th percentile意味着有10%的数据比它小,90%的数据比它大;50th percentile意味着有50%的数据比它小,50%的数据比它大。
假设数据集是预测的均方根速度。如果P10=3km/s,那么说明10%的预测值小于3km/s,90%的预测值大于3km/s。

小结: 作者将NN的良好性能解释为它建立了CMP道集的表示,该表示与1D水平层状介质的均方根速度和层速度有关(方程2 )。可以认为,这些知识大部分是针对具有合成数据的1D速度模型。然而,1D分析是更完整处理的基础,相关结果可以推广到2D。

2D合成数据

设计:
重构2D速度模型
测试数据:100个2D倾斜地层(最大倾角6°,随机速度扰动为当前层速度的8 %)速度合成模型
和1D训练相同的观测系统

结果:(NN可以推广到简单的2D)
图4:神经网络预测的二维层速度模型,分别对应第10、50和90百分位数。
可以看出,2D结构得到了很好的恢复,但精度不如1D平层状模型(层速度总均方根误差由322 m / s增大到424 m / s,均方根速度均方根误差由42 m / s增大到44 m / s。)

小结: 所构建的CMP道集的表示(即CNN编码器)在NN的预训练层发挥了作用。

真实数据

测试数据:
海上(美国大西洋大陆边缘)、21条测线、炮集、叠加剖面
在32测线的最深处应用NN。CMP道集进行最小程度的预处理
首先在50 m的恒定间隔处插值地震道,并在10~35 Hz之间应用带通滤波器。
注:由于训练集和真实数据集的采集参数相同,NN不需要进一步的训练。

结果:
图5:CMP道集+相似系数+NMO校正道集
注:浅蓝色(预测的均方根速度)和浅绿色线(预测的层速度)是由16个NN集成模型预测给出的标准差。当反射波清晰可见时,标准差较小,当多次波存在时,标准差变大。
定性评估(因为无声波测井数据)

对NN效果不好的分析:

  1. 由于早期多次波重叠,真实数据集的反射识别比合成数据集的反射识别更易受到干扰。因为一次反射波识别这个输出只是训练速度估计NN的一个副产品,所以NN出现异常。
  2. 另一方面,受到起伏地表多次波的影响,导致相似极大值迅速减小到接近水速1500 m∕s。这是由于训练集中不存在起伏地表的多次波,因此神经网络无法学习如何处理这些波到时。
    解决方法一:采用去除多次波技术对CMPs进行处理,然后再将其送入NN。
    解决方法二:设计一个对多次波具有鲁棒性的神经网络

图6:根据1 ~ 2080的CMPs ,得到的预测均方根速度+预测层速度+利用预测速度得到的叠加剖面。
其中,叠加剖面是按下列顺序对每个CMP单独处理得到的:
( 1 )基于预测均方根速度的NMO校正;
( 2 )对所有CMP道求和;
( 3 )与t2成正比的增益;
( 4 )均方根道正则化。
为了更好地评价神经网络的输出,尽量保持处理工作流程简单。
注意:所有CMP的均方根速度是一致的
分析:从海底反射到时开始,速度开始增大,从CMP 0到CMP 2080,速度逐渐减小。然后,它增加到海底表面多次波的到达时间,这导致估计的速度迅速下降。因此,对于层速度和均方根速度,速度的有效估计范围介于时间0和海底多次波第一次出现的时间之间。
叠加剖面图6(c)与哈钦森等人( 1997 )得到的图6(d)结果相当。这表明,即使使用基本1D训练集,NN也很容易用于处理实际调查。

对比图6(c)叠加剖面和图6(b)层速度,大多数尖锐的速度变化与相干反射体有关。对于8 s以下,即CMP 0 ~ 1250之间的更深层反射,情况尤其如此。较浅的剖面显示出更多的非均匀速度变化,这与较少的相干反射和较强的衍射双曲线有关。由于一维速度假设在浅层段不太适用,因此估计的速度可能比深层段更不可靠。(即浅层的速度没有深层的速度好反演)

相干反射体(coherent reflector):地质体系在不同的地点和角度上以类似的方式反射地震波(具有相同反射特征),说明地层可能具有连续或对称结构。

讨论

NN的功能1:
本研究结果表明,NN有潜力直接从地震波形中准确地估计复杂的1D层状和缓倾角2D层状模型的均方根速度和层速度
最近的研究也指向了同样的方向。
Araya- Polo et al . ( 2018 )的研究表明,结合全连接层的CNN可以估计深度方向的速度。然而,它们的估计是基于相似性的,这限制了神经网络利用地震波形的相位和振幅信息的潜力。
Yang和Ma ( 2019 )直接从地震波形中用CNN恢复2D速度模型,但其训练和测试模型仍然相当简单,且与波长相比层厚度较大。
本文结果表明了该方法对于具有薄层(最小膜层厚度为最大波长的1 / 4)的复杂1D模型的有效性。然而, 训练一个在真实数据上获得良好性能的神经网络,其所需的训练模型的复杂程度仍然是一个悬而未决的问题。 \red{训练一个在真实数据上获得良好性能的神经网络,其所需的训练模型的复杂程度仍然是一个悬而未决的问题。} 训练一个在真实数据上获得良好性能的神经网络,其所需的训练模型的复杂程度仍然是一个悬而未决的问题。

NN的功能2:
另一个主要发现是,NNs可以通过纯合成地震数据进行训练,并且在真实数据中仍然具有足够好的性能
对于数据驱动的方法,如深度学习,广泛的标注数据库的可访问性是至关重要的。这对地震处理来说有两个方面的问题:

  1. 数据往往是有所产权的,不共享;
  2. 获得正确标注的数据是困难的,甚至是不可能的,因为真正的速度模型从来都不知道。
    合成数据优点:解决了上述两个问题。因为它们可以相对便宜地生成,并允许我们固定生成数据集的准确标签所需的所有参数。
    合成数据缺点:丢失真实数据中的一些重要特征,如噪声,从而阻碍网络在真实数据上的良好表现。
    比如,本文NN在起伏地表多次波的情况下- -由于它们不在合成训练集中,它们的存在极大地影响了对真实数据集的估计速度。但表面多次波可以非常容易地被建模,因此这不是一个真正的缺点。
    然而它提出了一个问题,即 训练一个能够很好地泛化到真实数据的网络所需要的合成数据的准确性。 \red{训练一个能够很好地泛化到真实数据的网络所需要的合成数据的准确性。} 训练一个能够很好地泛化到真实数据的网络所需要的合成数据的准确性。这个问题应该是进一步研究的重点。

NN的效率:
就目前而言,我们提出的NN是否真正适用于地震处理还为时尚早。
本文real data结果表明,用NN可以获得足够的均方根速度估计。

NN的准确性:
NN的设计既不是为了最大化叠加,也不是为了获得相干叠加剖面,是为了准确。因此,需要对多次波进行更严格的测试,并与专家地震处理器进行比较,以评估NN的准确性。
NN的主要优点:
估计速度是 自动的,计算成本低 \blue{自动的,计算成本低} 自动的,计算成本低。(测试时在单个Nvidia Quadro 6000 GPU上完成地震测线32的2000个CMPs需要不到5分钟。但训练网络的成本较高(在同样的单个GPU上运行约24 h)。
NN可以用于稍微不同的采集参数。具有不同的源特征(如本文训练集和测试集所示)和不同的道数或采样间隔(测试,但未在本文中显示)。然而,需要更多的工作来 开发真正通用的神经网络,能够处理任意几何形状、传感器或环境 ( 陆地或海洋 ) 。 \red{开发真正通用的神经网络,能够处理任意几何形状、传感器或环境(陆地或海洋)。} 开发真正通用的神经网络,能够处理任意几何形状、传感器或环境(陆地或海洋)

为什么研究基准问题:
这项工作的主要目的是提出一个基准问题,足够简单,以便可以以较小的成本测试不同的NN设计,但足够复杂,以便从它中学到的见解可以适用于更现实的应用。
事实上,由于3D数据处理所需的数据量非常大,因此需要对更小、更简化的问题预先测试简单的设计方案。
从CMP道集估计1D速度剖面就是这样一个试验。在1D基准问题上训练的神经网络通常具有有限的实际适用性。例如,本文NN只适用于缓倾角层状地球模型,不能处理更复杂的结构,这是基于简单NMO分析的一个普遍限制。(基准问题的局限性)
然而,在1D层状模型上训练的神经网络,例如本文NN,可以用作更精细网络的构建模块。例如,编码器可以嵌入到具有预训练权重的较大网络中,以减少设计用于预测3D速度模型的网络的训练时间。(研究基准问题的作用)

总结

内容:

  1. 研究1D速度估计的简化问题,以获得对一般速度反演神经网络设计的见解。
  2. 证明通过使用CNN,可以建立适合速度分析自动化的地震数据的表示。
  3. 基于这种表示,对于具有高速反差和薄层的复杂一维速度模型,用RNN估计了均方根速度和层速度

意义:

  1. 说明CNN和RNN对于较大的网络来说是很有前途的架构,能够处理3D速度结构。这提供了使用神经网络的数据驱动方法具有在现实复杂环境中实现速度分析自动化潜力的证据,并表明了用于成像地下的自动化现代速度建模工作流程的可行性。
  2. 使用合成数据进行训练是一种合理的选择,以开发在真实数据上表现良好的NN。估计的速度与相似度有很好的相关性,并得到一个相干叠加剖面。若是为了达到叠加或迁移的目的,需要进一步的测试来估计其真正的适用性。但作者关注的是提出一个足够简单的基准问题,以指导开发能够深度预测3D速度模型的更复杂的神经网络。

局限性:
和常规时差分析的常规处理一样,本文讨论的NN结构的一个主要限制是它只对 缓倾斜层状 \blue{缓倾斜层状} 缓倾斜层状地球模型有效。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值