原题链接:
https://leetcode-cn.com/problems/divide-two-integers/
题目描述
给定两个整数,被除数 dividend 和除数 divisor。将两数相除,要求不使用乘法、除法和 mod 运算符。
返回被除数 dividend 除以除数 divisor 得到的商。
整数除法的结果应当截去(truncate)其小数部分,例如:truncate(8.345) = 8 以及 truncate(-2.7335) = -2
示例1:
输入: dividend = 10, divisor = 3
输出: 3
解释: 10/3 = truncate(3.33333…) = truncate(3) = 3
示例2:
输入: dividend = 7, divisor = -3
输出: -2
解释: 7/-3 = truncate(-2.33333…) = -2
提示:
- 被除数和除数均为 32 位有符号整数。
- 除数不为 0。
- 假设我们的环境只能存储 32 位有符号整数,其数值范围是 [−231, 231 − 1]。本题中,如果除法结果溢出,则返回 231 − 1。
思路方法:
最简单直接的一种方法就是做差法,先根据被除数与除数确定商的最终符号,然后被除数与除数均取绝对值,循环作差,直到被除数不够减位置,作差的次数即为商的绝对值。
着实简单粗暴,超时也在所难免!
超时代码:
class Solution {
public:
int divide(int dividend, int divisor) {
int flag = 1;
if((dividend > 0 && divisor < 0) || (dividend < 0 && divisor > 0)){
flag = -1;
}
long long a = dividend,b = divisor,ans = 0;
a = fabs(a);
b = fabs(b);
while(a >= b){
ans++;
a -= b;
}
if(flag * ans > INT_MAX || flag * ans < INT_MIN){
return INT_MAX;
}
return flag * ans;
}
};
那么如何避免超时呢?这是个问题。😉
如果每作差一次就将减数翻倍,那么作差的效率不就会成指数倍速的增加。
话不多说,都在这代码里头了!!!
AC代码:
class Solution {
public:
long long dg(long long a, long long b){
long long ans = 0,t = 1,x = b;
if(a < b){
return 0;
}
while(a >= x){
a -= x;
x += x;//减数翻倍
ans += t;
t += t;//商增加的结果也会翻倍
}
return ans + dg(a,b);//不够减时,减数还原为原结果再次递归,直到还原后的结果也不够减
}
int divide(int dividend, int divisor) {
int flag = 1,z = 1;
if((dividend > 0 && divisor < 0) || (dividend < 0 && divisor > 0)){//确定最终结果的符号
flag = -1;
}
long long a = fabs(dividend), b = fabs(divisor),ans;//若使用int,那么当数据为INT_MIN时,加绝对值便会越界。
ans = dg(a,b);//递归作差
if(flag * ans > INT_MAX || flag * ans < INT_MIN){
return INT_MAX;
}
return flag * ans;
}
};
本文探讨了一种解决LeetCode上的整数除法问题的方法,通过避免使用乘法、除法和模运算符。初始的简单实现通过不断作差导致超时,而改进后的解决方案利用减数翻倍加快了计算速度,从而提高了效率。通过递归和减数翻倍,实现了在32位整数限制内的正确除法计算,并避免了溢出情况。
229

被折叠的 条评论
为什么被折叠?



