前言
在很多acm题目中,会有时间限制,若是算法效率不高,则会造成时间超限,而判断素数则是比较常见的一类,下面给出了三种不同的算法。
最简单粗暴的做法
bool prime(int n)
{
if (n <= 3)
{
return n > 1;
}
for (int i = 2; i < n; i++)
{
if (n % i == 0)
return false;
}
return true;
}
初步优化的做法
bool prime(int n)
{
if (n <= 3)
{
return n > 1;
}
int k = sqrt(n);
for (int i = 2; i <= k; i++)
{
if (n % i == 0)
return false;
}
return true;
}
六素数法
bool prime(int n)
{
if (n <= 3)
{
return n > 1;
}
if (n % 2 == 0 || n % 3 == 0)
return false;
int k = sqrt(n)+1;
for (int i = 5; i < k; i+=6)
{
if (n % i == 0||n%(i+2)==0)
return false;
}
return true;
}
总结:以上三种算法的区别主要体现在时间效率上,效率依次提高,若还有其他更优的算法,请不吝赐教。