算法之判断素数

前言

在很多acm题目中,会有时间限制,若是算法效率不高,则会造成时间超限,而判断素数则是比较常见的一类,下面给出了三种不同的算法。

最简单粗暴的做法

bool prime(int n) 
{
    if (n <= 3) 
    {
        return n > 1;
    }
    for (int i = 2; i < n; i++) 
    {
        if (n % i == 0)
            return false;
    }
    return true;
}

初步优化的做法

 bool prime(int n)
 {
    if (n <= 3) 
    {
        return n > 1;
    }
    int k = sqrt(n);
    for (int i = 2; i <= k; i++)
    {
        if (n % i == 0)
            return false;
    }
    return true;
}

六素数法

bool prime(int n)
 {
    if (n <= 3) 
    {
        return n > 1;
    }
    if (n % 2 == 0 || n % 3 == 0)
        return false;
    int k = sqrt(n)+1;
    for (int i = 5; i < k; i+=6)
    {
        if (n % i == 0||n%(i+2)==0)
            return false;
    }
    return true;
}

总结:以上三种算法的区别主要体现在时间效率上,效率依次提高,若还有其他更优的算法,请不吝赐教。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

时间邮递员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值