算法设计与分析作业3 🌻🌻🌻
学号:2020011181
The first question🍀🍀
快速排序算法是根据分治策略来设计的,简述其基本思想
解析:
对于无序序列 a[low…high]进行快速排序,整个排序为“大问题”。选择其中的 一个基准 base=a[i](通常以序列中第一个元素为基准),将所有小于等于 base 的元素移动 到它的前面,所有大于等于 base
的元素移动到它的后面,即将基准归位到 a[i],这样产生 a[low…i-1]和
a[i+1…high]两个无序序列,它们的排序为“小问题”。当 a[low…high]序列只 有一个元素或者为空时对应递归出口。
所以快速排序算法就是采用分治策略,将一个“大问题”分解为两个“小问题”来求 解。由于元素都是在 a
数组中,其合并过程是自然产生的,不需要特别设计
The second question:🍀🍀
快速排序算法是根据分治策略来设计的,简述其基本思想
采用类似求求一个整数序列中的最大次大元素的分治法思路。对应的程序如
下:
#include <stdio.h>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
void MaxMin(int a[],int low,int high,int &maxe,int &mine) //求a中最大最小元素
{ if (low==high) //只有一个元素
{ maxe=a[low];
mine=a[low];
}
else if (low==high-1) //只有两个元素
{ maxe=max(a[low],a[high]);
mine=min(a[low],a[high]);
}
else //有两个以上元素
{ int mid=(low+high)/2;
int lmaxe,lmine;
MaxMin(a,low,mid,lmaxe,lmine);
int rmaxe,rmine;
MaxMin(a,mid+1,high,rmaxe,rmine);
maxe=max(lmaxe,rmaxe);
mine=min(lmine,rmine);
}
}
void main()
{ int a[]={4,3,1,2,5};
int n=sizeof(a)/sizeof(a[0]);
int maxe,mine;
MaxMin(a,0,n-1,maxe,mine);
printf("Max=%d, Min=%d\n",maxe,mine);
}
结果如下图:
The third question:🍀🍀
设计一个算法,采用分治法求 x^n。
解析:
设 f(x,n)=x n,采用分治法求解对应的递归模型如下: f(x,n)=x 当 n=1 f(x,n)=f(x,n/2)*f(x,n/2)
当 n 为偶数时 f(x,n)=f(x,(n-1)/2)*f(x,(n-1)/2)*x 当 n 为奇数时
对应的递归程序如下:
#include <stdio.h>
double solve(double x,int n) //求x^n
{ double fv;
if (n==1) return x;
if (n%2==0)
{ fv=solve(x,n/2);
return fv*fv;
}
else
{ fv=solve(x,(n-1)/2);
return fv*fv*x;
}
}
void main()
{ double x=2.0;
printf("求解结果:\n");
for (int i=1;i<=10;i++)
printf(" %g^%d=%g\n",x,i,solve(x,i));
}
结果如下图:
Tha's the end~thank you for reading it ~wish you good luck*