一、时间复杂度
一个操作如果和样本的数据量没有关系,每次都是固定时间内完成的操作,叫做常数操作。
时间复杂度为一个算法流程中,常数操作数量的一个指标。常用O(读作big O)来表示。具体来说,这个算法流程中,发生了多少常数操作,进而总结出常数操作数量的表达式。
评价一个算法流程的好坏,先看时间复杂度的指标,然后再分析不同数据样本下的实际运行时间,也就是“常数项时间”。
选择排序、冒泡排序的时间复杂度为
O
(
N
2
)
O(N^2)
O(N2),额外空间复杂度为
O
(
1
)
O(1)
O(1)
c++实现的选择排序算法:
//创建一个数组
int arr[] = {1, 6, 3, 6, 8, 6, 4};
//判断数组是否为空或者只有一个数组
if (arr == NULL || sizeof(arr) < 2)
{
return;
}
//开始选择排序
for (int i = 0; i < sizeof(arr)/sizeof(arr[0]) - 1; i++)
{
// 暂存最小的数据下标索引
int min = i;
//从第一个操作数开始筛选
for (int j = i + 1; j < sizeof(arr) / sizeof(arr[0]); j++)
{
if (arr[min] > arr[j])
{
int tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
}
}
for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++)
{
cout << arr[i] << " ";
}
cout << endl;
冒泡排序:
//创建数组
int arr[] = { 2, 3, 5, 1, 3, 4, 5 };
//判断数组是否为空或者只有一个数组
if (arr == NULL || sizeof(arr) < 2)
{
return;
}
//开始冒泡排序
for (int i = sizeof(arr) / sizeof(arr[0]) - 1; i > 0; i--)
{
for (int j = 0; j < i; j++)
{
if (arr[j] > arr[j+1])
{
arr[i] = arr[j] ^ arr[i];
arr[j] = arr[j] ^ arr[i];
arr[i] = arr[j] ^ arr[i];
}
}
}
//输出排序后的数组
for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++)
{
cout << arr[i] << " ";
}
cout << endl;
以上两种排序算法不管数组内部是什么情况,都需要执行固定的操作,但是插入排序要考虑数组内部的情况,在最好情况下(数组刚好按照想要排序的顺序排列),其时间复杂度为 O ( N ) O(N) O(N),,最差情况下((数组刚好与想要排序的顺序相反)),其时间复杂度为 O ( N 2 ) O(N^2) O(N2),在时间复杂度的考量上,以最差情况为标准,所以为 O ( N 2 ) O(N^2) O(N2),其c++实现:
//创建数组
int arr[] = { 2, 2, 3, 1, 3, 1, 5, 6 };
//如果数组为空或者只有一个数据时,跳过
if (arr == NULL || sizeof(arr) < 2)
{
return;
}
//外侧循环
for (int i = 1; i < sizeof(arr)/ sizeof(arr[0]); i++)
{
//内侧循环
for (int j = i; j > 0; j--)
{
//如果内测循环指针指向的数据比左侧数据小,则进行交换
if (arr[j - 1] > arr[j])
{
int tem = arr[j];
arr[j] = arr[j - 1];
arr[j - 1] = tem;
}
}
}
//输出排序后的数组
for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++)
{
cout << arr[i] << " ";
}
cout << endl;
二、力扣刷题:
有一系列数组,只有一个数字出现了奇数次,其余的数出现了偶数次,求出出现奇数次的数据,要求算法的时间复杂度为O(N):
void test10()
{
//创建一系列数组
int arr[] = { 2, 2, 3, 1, 3, 1, 5 };
int eor = 0;
for (int i = 0; i < sizeof(arr)/sizeof(arr[0]); i++)
{
//使用初始变量0逐个异或数组中的每一个元素
eor ^= arr[i];
}
cout << "出现奇数次的数字为: " << eor << endl;
}
在异或操作中,0异或0就会出现0的结果,1异或1就等于0,1异或0就等于1。异或操作也可以看成二进制的无进位相加。所以当数组中出现偶数个相同的元素时,其结果会是0,由于异或操作有交换性质,当0异或一个奇数个元素时,其结果就是该数。
有一系列数组,有两个数字出现了奇数次,且这两个奇数次的元素不相等,其余的数出现了偶数次,求出出现奇数次的数据,要求算法的时间复杂度为O(N):
//创建一系列数组
int arr[] = { 2, 2, 3, 1, 3, 1, 5, 6 };
int eor = 0;
int eor1 = 0;
for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++)
{
//最终得出a异或b的结果
eor ^= arr[i];
}
//提取eor二进制中的最后一个1
int RightOne = eor & (~eor + 1);
for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++)
{
if ((RightOne & arr[i]) == 0)
{
//得出两个奇数次数数字之一
eor1 ^= arr[i];
}
}
cout << eor1 << (eor1 ^ eor) << endl;
假设两个出现奇数次的数分别为a,b。这道算法题与之前的算法题有相同之处,但是第一次遍历异或的结果是a异或b。我们只需要知道a或者b再异或一下a异或b的结果就可以得到另一个数字的结果。我们可以这样假设,因为a与b不相等,a异或b的结果也就肯定不为0。在二进制中,a异或b的结果肯定某一位会出现1。假设a异或b的结果为1010。在这里我们只看其中的一位,也就是第二位。a异或b在第二位中出现1,反映到a,b上我们可以知道。a或者b肯定在第二位为1,在这里我们假设a在第二位为1。我们只需要再次迭代一下数组中的元素,可以通过与的操作将第二位上不是1的数进行过滤,如果第二位上是1,我们只需要进行一个异或操作即可,因为除了a之外,其余第二位上是1的数都是偶数,所以最后异或出来的数就是a,再用a异或(a异或b)的结果可以得出b。