摘要
人工免疫系统是受免疫学启发的一种仿生智能系统。因其对于复杂问题优秀的处理能力,已成为人工智能领域的研究热点。人工免疫系统主要研究免疫模型、免疫机制、免疫算法以及实验仿真。目前人工免疫系统已应用于智能优化、数据挖掘、模式识别、故障诊断以及入侵检测等领域。
关键词:人工免疫系统;免疫原理;智能优化
前言
免疫系统是除神经系统之外最复杂的生物系统。其在过去二十多年来发展迅速,已经产生许多利用免疫机制的优秀算法。2008年,Timmis等人将人工免疫系统定义为:一个自适应系统,其受理论免疫免疫学、已有的免疫功能、原理和模型等启发,并应用于解决相关应用问题。莫宏伟等人将人工免疫系统定义为:是基于免疫系统机制和免疫学理论而发展的各种人工范例的统称,该定义涵盖受免疫启发的算法、技术、模型等。
免疫系统是机体的自适应调节系统之一。具有免疫防御、监视、自稳的功能。其中,免疫防御功能指机体防御以及清除病原体的功能;免疫监视功能指免疫系统监视、识别并清除异己、异常成分的功能;免疫自稳功能指机体清除体内衰老、损伤细胞和其他成分,通过免疫网络调节免疫应答平衡的功能。
免疫系统是分布式系统,由广泛分布在全身的免疫细胞组成。具有时间以及空间上的分布式网络结构。同时免疫系统具有强大的记忆、学习、识别以及自适应等能力。免疫系统所具有的特性与所需解决的工程问题需求的特性具有较高的重合性。因此基于目前已知的免疫机制提出高效的算法已经成为算法研究新的方向。人工免疫算法迅速发展使得其领域拓展到模式识别、智能优化、数据挖掘、机器人学、自动控制、故障识别以及入侵检测等领域。本文简要介绍几个常见免疫算法使用的免疫机制以及免疫结构,并对算法简要介绍。
正文
2.1免疫结构及机制
免疫系统由免疫器官、免疫细胞以及免疫活性物质组成。免疫系统分为固有免疫(非特异性免疫)和适应免疫(特异性免疫),其中适应免疫分为体液免疫以及细胞免疫。
机体的免疫功能是在淋巴细胞、单核细胞和其他有关细胞的相互作用下完成的。淋巴细胞又分为B细胞和T胞两种。B细胞的主要功能是产生抗体,并执行特异体液免疫功能,B细胞由骨轴产生;T细胞的主要功能是调节其它细胞的活动或直接对抗原实施攻击,T细胞由胸腺产生,分为抑制T细胞、辅助T细胞和杀伤T细胞三种。B细胞和T细胞进行克隆增殖、分化并表达功能。
当机体受到病原体侵入时,部分细胞释放化学信号刺激免疫系统。巨噬细胞攻击并杀死病原体,中心粒细胞通过血液循环系统到达被侵入位置攻击并杀死病原体。树突状细胞通过将细菌包裹并撕成小部分来收集样本,之后进入淋巴结找到特异的辅助T细胞并激活该辅助T细胞。被激活的辅助T细胞不断复制,一部分到达别侵入位置,另一部分辅助T细胞找到特异的B淋巴细胞并激活该淋巴细胞。B淋巴细胞进行克隆复制,产生大量的抗体。当病原体清除后,大量的免疫细胞凋亡,一部分辅助T细胞留下转变为记忆细胞,一部分B淋巴细胞保留并不断地产生抗体。
淋巴细胞行为由亲合度决定,当与抗原表位发生结合的受体数量超过某个阈值并接收到协同刺激信号时,该细胞被活化。即当淋巴细胞活化阈值使其成为一个泛化的检测元时,单个淋巴细胞能够检测到具有相似结构的多个抗原表位。将具有相似结构的抗原表位构成的空间作为一个模式集合,称为相似模式集合。单个淋巴细胞所能检测的多个抗原表位构成的集合为相似模式集合的子集,称为相似模式子集。淋巴细胞与抗原表位之间存在一对多的映射关系。
2.2克隆选择算法
Castrol等对免疫系统克隆选择机制概括,提出了基于克隆选择机制的函数优化和模式识别的基本结构。其基本计算过程为:
- 生成一个初始种群P=M+Pr其中,M为记忆个体集合,由亲和力较高的元素组成;Pr为剩余个体组成的集合
- 选择n个具有较高亲和力的个体
- 对这n个个体执行克隆操作,构成临时克隆集合C
- 对C中个体执行一定概率的变异以及遗传交叉操作,使之成为成熟的抗体集合C*
- 选取C*中部分好的个体(即亲合度较高的个体)加入M中,并用M中一些个体替换P中个体
- 使用随机产生的新个体替换Pr中一定量的个体,保证种群多样性
- 若终止条件不满足则继续执行上述操作
该算法是将问题作为抗原,将所求解作为抗体。通过模拟免疫系统中细胞的复制、识别以及最终转化为记忆细胞的过程实现问题的求解。该克隆选择算法综合了免疫以及遗传算法的特点,改善了遗传算法无法更改种群数目以及搜索占用较大存储以及运算时间的问题。该算法可以与粒子群算法结合进行改进,提高搜索效率,并通过加入RMS的方式改进搜索步幅问题。可以利用算法所选个体亲合度不同的特性复制不同数目的个体,亲合度越高,个体复制数目越多,增强算法在局部最优结果附近搜索的力度。该算法的思想在机器学习算法中能够广发应用。
2.3阴性选择算法
骨髓中存在淋巴细胞的候选基因库,通过随机选取候选基因库中的基因片段组合产生淋巴细胞及其表面的受体。该过程结束后,淋巴细胞进入各自的发育中心发育成熟。在发育中心中,自身蛋白暴露在淋巴细胞下,与淋巴细胞接触。免疫细胞的耐受化过程发生在该阶段。在淋巴细胞与自身蛋白的接触中,能够与自身蛋白结合的淋巴细胞被丢弃,不能与自身蛋白结合的淋巴细胞被保存下来,该过程成为阴性选择。
Forrest等于1994年提出基于免疫系统的阴性选择原理的阴性选择算法。该算法已经应用于入侵检测、故障诊断、图像处理等领域。
该算法定义“自体”为被监视系统的正常模式。算法产生一定数量的随机模式并与自体模式比较。如果随机产生的模式能够与自体模式中的任意模式匹配,则该随机模式被删除,否则成为一个监视器。多个监视器组成一个集合,该集合监视自体模式变化,如果发生变化的自体模式中有模式能够与监视器中的模式结合,则该自体模式异常。该算法将所有的可能的模式作为一个集合,定义该集合为总集合U,定义自体模式集合S,剩余的模式组成的集合为N。即U=S+N。根据要求的检测器检测失败率得到检测器数目。通过随机生成模式等方式建立检测器集合R。对自体进行监视。
该算法的思想基于阴性选择,建立检测器集合的行为即模仿淋巴细胞发育过程中阴性选择,自体即为自身蛋白。检测器集合建立完成后即可用于检测异常,该过程为成熟淋巴细胞对各种抗原的检测。
2.3免疫网络算法(aiNet)
de Castro和Von Zuben于2000年提出了aiNet人工免疫网络模型。该网络模型忽略B细胞和抗体的区别,具有减少冗余、描述数据结构、包含聚类形状等特征。该网络模型将信息分布在抗体、抗原中,通过网络细胞亲合力和浓度的变化进行学习。
aiNet为带权重的不完全连接图。该不完全连接图包含节点(抗体),节点对集合(节点之间的边,表示节点的相互作用权重,该相互作用权重为节点间的亲和力)。系统的目的为:对于给定的抗原集合(训练数据集合),要求找出集合中冗余的数据,实现数据压缩,可以实现数据聚类等。如下为定义:
(1):抗原集合
(2):抗体集合
(3):
亲和力矩阵,
,
(此处使用欧式距离)
(4):
相似度矩阵,
(此处使用欧氏距离)
(5)抗体浓度调节:于抗原亲和力高的抗体通过克隆选择原理进行克隆变异,亲和力低的部分抗体被消除。抗体与抗体之间的识别以实现网络抑制,用以消除太相似的抗体。记忆节点数目与训练集合特性以及抑制阈值有关
(6):记忆抗体集合
(7):可能加入抗体集合
中的抗体集合
(8):自然死亡阈值。若抗体亲和力大于
则对该抗体进行克隆变异操作。
(9):抑制阈值。若两个抗体相似程度超过
则删除亲和力较小的抗体,形成记忆集合
(10):成熟抗体被选择的百分比
该算法大致步骤如下:
第一步:初始化种群
在基于人工免疫系统的聚类分析中,把要进行分类的数据作为抗原,把聚类中心作为抗体(利用淋巴细胞与抗原表位存在一对多映射的关系,以及抗原表位的相似性)。初始化时。在数据集中随机选取K个数据作为抗体。
第二步:识别抗原
对于每个抗原执行如下的操作
- 亲和力计算:计算抗原
与所有抗体
的亲和力
- 克隆变异:选择n个最高亲和力的dij执行克隆以及变异操作。细胞亲和力越高则克隆的数目越多,形成集合C
- 控制早熟:C中抗体根据
进行成熟,形成
集合
- 更新D:计算
中抗体与抗原
的亲和力,更新矩阵D
的确立:根据矩阵D,重新选择亲和力最高的前
个抗体,建立部分记忆抗体集合,并清除
中
的抗体
- 网络抑制:计算相似度
的数值,清除
的记忆抗体,降低
的规模
的确立:连接
和
第三步:的确立
根据定义计算中的相似矩阵
第四步:剪枝
对中
的抗体删除
参考文献
- 王珺,刘希玉.基于aiNet的数据模糊聚类算法[J].计算机工程与科学,2007, (04):72-73+107.
- 邓泽林,谭冠政,范必双,等. 免疫分类研究进展 [J]. 计算机工程与应用, 2011, 47 (16): 8-11+25
- 路璐. 基于aiNET人工免疫网络的推荐算法 [J]. 电脑编程技巧与维护, 2010, (24): 98-99. DOI:10.16184/j.cnki.comprg.2010.24.068
- 何珍梅,徐雪松.人工免疫系统研究综述[J].华东交通大学学报,2007(04):79-83.
- 邓泽林,谭冠政,范必双,等.免疫分类研究进展[J].计算机工程与应用,2011,47(16):8-11+25.
- 廖章珍,陈强. 人工免疫系统的基本理论及其应用 [J]. 自动化与仪器仪表, 2008, (01): 5-8.