最大子段和之分治递归法

最大子段和之分治递归法

Description
给定n(1<=n<=50000)个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n。 例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20。

注意:本题目要求用分治递归法求解,除了需要输出最大子段和的值之外,还需要输出求得该结果所需的递归调用总次数。

递归调用总次数的获得,可以参考以下求菲波那切数列的代码段中全局变量count的用法:

#include
int count=0;
int main()
{
int n,m;
int fib(int n);
scanf("%d",&n);
m=fib(n);
printf("%d %d\n",m,count);
return 0;
}
int fib(int n)
{
int s;
count++;
if((n1)||(n0)) return 1;
else s=fib(n-1)+fib(n-2);
return s;
}
Input
第一行输入整数n(1<=n<=50000),表示整数序列中的数据元素个数;

第二行依次输入n个整数,对应顺序表中存放的每个数据元素值。

Output
一行输出两个整数,之间以空格间隔输出:

第一个整数为所求的最大子段和;

第二个整数为用分治递归法求解最大子段和时,递归函数被调用的总次数。

Sample
Input
6
-2 11 -4 13 -5 -2
Output
20 11

#include<stdio.h>
#include<string>
#include<iostream>
#include<algorithm>
using namespace std;
int cnt=0;  //作为递归次数,每次递归之前cnt++
int a[50010];  
int maxx=0;  //寻找最大区间和
int digui (int l,int r)
{
    cnt++;
    if(l==r)  //递归最后,区间内只有一个数字
    {
        if(a[l]<=0)
            maxx=0;
        else
            maxx=a[l];
    }
    else  //总思想
    {
        int mid=(l+r)/2;  //分治阶段
        int l_maxx=digui(l,mid);  //先对左边进行判断寻找
        int r_maxx=digui(mid+1,r);  //右边
        int s=0;  //对一个区间不仅在左边还在右边进行判断
        for(int i=l;i<=r;i++)
        {
            if(s+a[i]>0)
                maxx=max(maxx,s=s+a[i]);  //如果之前区间和大于0,与进行判断,取最大值,并对其进行赋值
            else
                s=0;  //小于0直接赋值0
        }
        maxx=max(maxx,l_maxx);
        maxx=max(maxx,r_maxx);
    }
    return maxx;
}
int main()
{
    int n;
    cin>>n;
    for(int i=0;i<n;i++)
        cin>>a[i];
    int maxx1=digui(0,n-1);
    cout<<maxx1<< " "<<cnt;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pig2687

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值