最大子段和之分治递归法
Description
给定n(1<=n<=50000)个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n。 例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20。
注意:本题目要求用分治递归法求解,除了需要输出最大子段和的值之外,还需要输出求得该结果所需的递归调用总次数。
递归调用总次数的获得,可以参考以下求菲波那切数列的代码段中全局变量count的用法:
#include
int count=0;
int main()
{
int n,m;
int fib(int n);
scanf("%d",&n);
m=fib(n);
printf("%d %d\n",m,count);
return 0;
}
int fib(int n)
{
int s;
count++;
if((n1)||(n0)) return 1;
else s=fib(n-1)+fib(n-2);
return s;
}
Input
第一行输入整数n(1<=n<=50000),表示整数序列中的数据元素个数;
第二行依次输入n个整数,对应顺序表中存放的每个数据元素值。
Output
一行输出两个整数,之间以空格间隔输出:
第一个整数为所求的最大子段和;
第二个整数为用分治递归法求解最大子段和时,递归函数被调用的总次数。
Sample
Input
6
-2 11 -4 13 -5 -2
Output
20 11
#include<stdio.h>
#include<string>
#include<iostream>
#include<algorithm>
using namespace std;
int cnt=0; //作为递归次数,每次递归之前cnt++
int a[50010];
int maxx=0; //寻找最大区间和
int digui (int l,int r)
{
cnt++;
if(l==r) //递归最后,区间内只有一个数字
{
if(a[l]<=0)
maxx=0;
else
maxx=a[l];
}
else //总思想
{
int mid=(l+r)/2; //分治阶段
int l_maxx=digui(l,mid); //先对左边进行判断寻找
int r_maxx=digui(mid+1,r); //右边
int s=0; //对一个区间不仅在左边还在右边进行判断
for(int i=l;i<=r;i++)
{
if(s+a[i]>0)
maxx=max(maxx,s=s+a[i]); //如果之前区间和大于0,与进行判断,取最大值,并对其进行赋值
else
s=0; //小于0直接赋值0
}
maxx=max(maxx,l_maxx);
maxx=max(maxx,r_maxx);
}
return maxx;
}
int main()
{
int n;
cin>>n;
for(int i=0;i<n;i++)
cin>>a[i];
int maxx1=digui(0,n-1);
cout<<maxx1<< " "<<cnt;
}