最大子段和(递归分治)算法分析与设计作业

本文介绍了如何使用动态规划和递归分治策略解决最大子段和问题。通过输入序列,计算并输出序列中具有最大和的连续子序列的和以及其起始和终止位置。样例输入和输出展示了算法的正确性,评分标准基于输入得到准确的输出。
摘要由CSDN通过智能技术生成

【问题描述】使用动态规划算法解最大子段和问题,具体来说就是,依据递归式,按照顺序求得子问题。

【输入形式】在屏幕上输入一个序列元素,包含负整数、0和正整数。

【输出形式】序列的最大子段和,及得到最大子段和时的起始和终止编号。

【样例输入】

-2 11 -4 13 -5 -2

【样例输出】

20

2

4

【样例说明】

输入:6个数,元素间以空格分隔。

输出:序列的最大子段和20,得到最大子段和时的起始编号为2,终止编号为4。

【评分标准】根据输入得到准确的输出。

通过代码:

#include<iostream>
#include<algorithm>
using namespace std;
int n,a[1000];
int inf=233333333;
int mss(int l,int r,int& curleftend,int& currightend){
   
    if(l==r){
   
        if(a[l]<0){
   
            return 0;
		}else{
   
            curleftend = l
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值