卷积的意义

最近复变函数与积分变换学了卷积,对卷积的意义不是很理解,在看了B站DR_CAN的视频后茅塞顿开,故写下这篇笔记

卷积的定义

设 函 数 f 1 ( t ) , f 2 ( t ) 在 ( − ∞ , + ∞ ) 内 绝 对 可 积 , 则 积 分 ∫ − ∞ + ∞ f 1 ( τ ) f 2 ( t − τ ) d τ 称 为 f 1 ( t ) 与 f 2 ( t ) 的 卷 积 , 记 为 f 1 ( t ) ∗ f 2 ( t ) , 即 设函数f_1(t),f_2(t)在(-\infty,+\infty)内绝对可积,则积分\int_{-\infty}^{+\infty}f_1(\tau)f_2(t - \tau)d\tau称为f_1(t)与f_2(t)的卷积,记为f_1(t)*f_2(t),即 f1(t),f2(t)(,+)+f1(τ)f2(tτ)dτf1(t)f2(t)f1(t)f2(t)
f 1 ( t ) ∗ f 2 ( t ) = ∫ − ∞ + ∞ f 1 ( τ ) f 2 ( t − τ ) d τ f_1(t)*f_2(t) = \int_{-\infty}^{+\infty}f_1(\tau)f_2(t - \tau)d\tau f1(t)f2(t)=+f1(τ)f2(tτ)dτ
f 1 , f 2 在 ( − ∞ , 0 ) 时 都 为 零 , 则 f 1 ( t ) ∗ f 2 ( t ) = ∫ 0 t f 1 ( τ ) f 2 ( t − τ ) d τ f_1,f_2在(-\infty,0)时都为零,则f_1(t)*f_2(t) = \int_{0}^{t}f_1(\tau)f_2(t - \tau)d\tau f1,f2(,0)f1(t)f2(t)=0tf1(τ)f2(tτ)dτ

卷积的意义

结论

对于一个线性时不变系统,我们若知道了此系统的单位脉冲响应 h ( t ) h(t) h(t),将输入函数 f ( t ) f(t) f(t)与其做卷积即可得到输出函数 x ( t ) x(t) x(t),即 f ( t ) ∗ h ( t ) = ∫ 0 t f ( τ ) h ( t − τ ) d τ = x ( t ) f(t)*h(t)=\int_{0}^{t}f(\tau)h(t - \tau)d\tau=x(t) f(t)h(t)=0tf(τ)h(tτ)dτ=x(t)

阐释

首先线性时不变系统满足叠加原理,那么任意一时刻的输出即可看成当前时刻的输入以及之前时刻的所有的输入引起的输出函数在此刻的值的叠加。
卷积.png
离散的分析,我们将输入函数分成若干小份,如图这里将输入函数分成三小份,那么在 t 3 t_3 t3时刻输出函数的值近似等于左侧三个门函数的单独的输出函数在 t 3 t_3 t3时刻值的和。
那么一般的,我们有
x ( n Δ t ) = ∑ i = 1 n m n ( n Δ t ) (1) x(n\Delta{t})=\sum_{i=1}^{n}m_n(n\Delta{t})\tag{1} x(nΔt)=i=1nmn(nΔt)(1)
其中 x ( t ) x(t) x(t)为系统的输出函数, m n ( t ) m_n(t) mn(t)为第n个门函数的输出函数
我们可以发现,这三个门函数的输出函数是有关系的,他们都是门函数的输出函数的平移和倍数关系。平移体现在三个门函数在横轴的位置不同,倍数体现在三个门函数的面积不同,他们在横轴的位置分别为 x = n Δ t x=n\Delta{t} x=nΔt,面积分别为 Δ t f ( n Δ t ) , n = 1 , 2 , 3... \Delta{t}f(n\Delta{t}),n=1,2,3... Δtf(nΔt),n=1,2,3...
设零处面积为一的门函数的输出函数为 m ( t ) m(t) m(t) n Δ t n\Delta{t} nΔt处门函数对应的输出函数为 Δ t f ( n Δ t ) m ( t − n Δ t ) \Delta{t}f(n\Delta{t})m(t-n\Delta{t}) Δtf(nΔt)m(tnΔt)
则(1)式可以写成
x ( n Δ t ) = ∑ i = 1 n Δ t f ( n Δ t ) m ( t − n Δ t ) (2) x(n\Delta{t})=\sum_{i=1}^{n}\Delta{t}f(n\Delta{t})m(t-n\Delta{t})\tag{2} x(nΔt)=i=1nΔtf(nΔt)m(tnΔt)(2)
对(2)式两边极限 Δ t → 0 \Delta{t}\to0 Δt0 由离散的变为连续的,得
x ( t ) = ∫ 0 t f ( τ ) h ( t − τ ) d τ (3) x(t)=\int_{0}^{t}f(\tau)h(t-\tau)d\tau\tag{3} x(t)=0tf(τ)h(tτ)dτ(3)
其中 h ( t ) h(t) h(t)为系统对于单位冲激函数 δ ( t ) \delta(t) δ(t)的输出函数。
f ( t ) ∗ h ( t ) = ∫ 0 t f ( τ ) h ( t − τ ) d τ = x ( t ) f(t)*h(t)=\int_{0}^{t}f(\tau)h(t - \tau)d\tau=x(t) f(t)h(t)=0tf(τ)h(tτ)dτ=x(t)

同时我们也可以直接考虑(3)式,我们可以把输入函数分成无数个冲激函数,而冲激函数的面积为 f ( τ ) d τ f(\tau)d\tau f(τ)dτ,相应的输出函数即为 f ( τ ) h ( t − τ ) d τ f(\tau)h(t-\tau)d\tau f(τ)h(tτ)dτ,将其从 τ = 0 到 τ = t \tau=0到\tau=t τ=0τ=t时刻相加(即积分)就得到了(3)式。

应用

卷积在工程中的应用有许多,其中一个比较有趣的应用是做变声处理。比如你想得到自己在某环境中的说话声音,你只需测出那个环境中的单位脉冲响应(在很短的时间内发出较大的声音并录下来),并将自己的说话声与录下来的声音做卷积即可近似得到自己在那个环境中的说话声音。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值