数据结构---二叉树、堆

●🧑个人主页:你帅你先说.
●📃欢迎点赞👍关注💡收藏💖
●📖既选择了远方,便只顾风雨兼程。
●🤟欢迎大家有问题随时私信我!
●🧐版权:本文由[你帅你先说.]原创,CSDN首发,侵权必究。

🥇1.树的概念及结构

🎄1.1树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
●有一个特殊的结点,称为根结点,根节点没有前驱结点
●除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
●因此,树是递归定义的。

💡:树形结构中,子树之间不能有交集,否则就不是树形结构

🎉1.2树的相关概念

在这里插入图片描述

节点的度: 一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点: 度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点
非终端节点或分支节点: 度不为0的节点; 如上图:D、E、F、G…等节点为分支节点
双亲节点或父节点: 若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点: 一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点: 具有相同父节点的节点互称为兄弟节点;如上图:B、C是兄弟节点
树的度: 一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次: 从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度: 树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点: 双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先: 从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙: 以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林: 由m(m>0)棵互不相交的树的集合称为森林

🏓1.3树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

typedef int DataType;
struct Node
{
 struct Node* firstChild1; // 第一个孩子结点
 struct Node* NextBrother; // 指向其下一个兄弟结点
 DataType data; // 结点中的数据域
};

什么意思呢?用一张图来解释
在这里插入图片描述

🎲1.4树在实际中的应用

在这里插入图片描述

🏆2.二叉树概念及结构

🔮2.1概念

一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

在这里插入图片描述
从上图可以看出:

  1. 二叉树不存在度大于2的结点
  2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
    💡:对于任意的二叉树都是由以下几种情况复合而成的:
    在这里插入图片描述

🎱2.2特殊的二叉树

  1. 满二叉树: 一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是 2 k − 1 2^k-1 2k1,则它就是满二叉树。
  2. 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K 的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对 应时称之为完全二叉树。
    要注意的是满二叉树是一种特殊的完全二叉树。

🏀2.3二叉树的性质

  1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 2 i − 1 2^{i-1} 2i1个结点
  2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是 2 h − 1 2^{h}-1 2h1 .
  3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为n2 ,则有 n0=n2+1
  4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= log ⁡ 2 ( n + 1 ) \log_2 (n+1) log2(n+1)
  5. 树中的结点数(记为n)等于所有结点的度数之和加1
    1.所有结点度数之和 = n-1(所有结点度数之和等于 = n1+2n2+3n3+…mnm)
    2.n = n0+n1+n2+…nm
  6. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:
    1.若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
    2.若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
    3.若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

知道了这些性质我们来做几道题小试牛刀一下:

  1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
    A 不存在这样的二叉树
    B 200
    C 198
    D 199

这题由性质3可以直接得出n0 = n2+1 = 199+1=200

2.在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n
B n+1
C n-1
D n/2

这道题可以说是把性质3和5考察的淋漓尽致。
首先由性质5知n0+n1+n2 = 2n,又由性质3知n2 = n0-1,所以2n0+n1 = 2n+1,此时好像再用其它性质似乎已经得不到一个新的方程组了,这个时候我们来思考一下,一颗完全二叉树,度为1的结点可能有几种情况。
在这里插入图片描述
在这里插入图片描述
通过画图我们知道完全二叉树度为1的结点要么为1,要么为0,且结点数为奇数时为0,为偶数时为1。由题意可知结点总数为2n,所以个数为1。则2n0+1 = 2n+1,所以n0 =n

3.一棵完全二叉树的节点数位为531个,那么这棵树的高度为( )
A 11
B 10
C 8
D 12

在做这道题之前,我们要先算一下一个完全二叉树的结点数范围,结点数最大时就是一个满二叉树,所以结点数是 2 h − 1 2^{h}-1 2h1,最少的情况就是最后一层只有一个结点,那么就是它的前h-1层的结点数加上1,即 2 h − 1 + 1 2^{h-1}+1 2h1+1,所以最终范围是[ 2 h − 1 + 1 2^{h-1}+1 2h1+1, 2 h − 1 2^{h}-1 2h1]根据这个就可以求解出本题答案,答案为B。

5.一个具有767个节点的完全二叉树,其叶子节点个数为()
A 383
B 384
C 385
D 386

这道题与第二题思路一样,在这里不再做解释,大家动手算一下,答案为B。

🤿2.4二叉树的遍历

🎋2.4.1前序遍历

void PreOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	printf("%c ", root->data);
	PreOrder(root->left);
	PreOrder(root->right);
}

🎈2.4.2中序遍历

void InOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	InOrder(root->left);
	printf("%c ", root->data);
	InOrder(root->right);
}

🎉2.4.3后序遍历

void PostOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	PostOrder(root->left);
	PostOrder(root->right);
	printf("%c ", root->data);
}

✨2.4.4层序遍历

层序遍历这边需要用到队列,在此不展示,具体实现请看数据结构–栈、队列

void BinaryTreeLevelOrder(BTNode* root)
{
	if (root == NULL)
		return;

	Queue q;
	QueueInit(&q);
	QueuePush(&q, root);
	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);
		printf("%c ", front->data);
		
		if (front->left)
			QueuePush(&q, front->left);

		if (front->right)
			QueuePush(&q, front->right);
	}
	printf("\n");

	QueueDestroy(&q);
}

🎮2.5二叉树实现

🪁2.5.1二叉树的结点个数

int BinaryTreeSize(BTNode* root)
{
	return root == NULL ? 0 : BinaryTreeSize(root->left) + BinaryTreeSize(root->right)+ 1;
}

🪀2.5.2二叉树叶子节点个数

int BinaryTreeLeafSize(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}

	if (root->left == NULL && root->right == NULL)
	{
		return 1;
	}

	return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}

🏸2.5.3二叉树第k层节点个数

int BinaryTreeLevelKSize(BTNode* root, int k)
{
	assert(k >= 1);
	if (root == NULL)
	{
		return 0;
	}

	if (k == 1)
	{
		return 1;
	}
	// root不等空,k也不等于1,说明root这颗树的第k节点在子树里面
	// 转换成求左右子树的第k-1等的节点数量
	return BinaryTreeLevelKSize(root->left, k - 1)+BinaryTreeLevelKSize(root->right, k - 1);
}

⚽2.5.4二叉树深度/高度

int BinaryTreeDepth(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	int leftDepth = BinaryTreeDepth(root->left);
	int rightDepth = BinaryTreeDepth(root->right);

	return leftDepth > rightDepth ? leftDepth + 1 : rightDepth + 1;
}

🎿2.5.5二叉树查找值为x的节点

BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
	if (root == NULL)
		return NULL;

	if (root->data == x)
		return root;

	BTNode* leftRet = BinaryTreeFind(root->left, x);
	if (leftRet)
		return leftRet;

	BTNode* rightRet = BinaryTreeFind(root->right, x);
	if (rightRet)
		return rightRet;

	return NULL;
}

🏓2.5.6通过前序遍历构建二叉树

//构建ab#c#de#fgh字母按顺序出现
struct TreeNode* CreateTree(char* str, int* pi)
{
	if (str[*pi] == '#')
	{
		(*pi)++;
		return NULL;
	}
	struct TreeNode* root = (struct TreeNode*)malloc(sizeof(struct TreeNode));
	root->val = str[(*pi)++];
	root->left = CreateTree(str, pi);
	root->right = CreateTree(str, pi);

	return root;
}

🎾2.5.7判断是否为完全二叉树

bool BinaryTreeComplete(BTNode* root)
{
	Queue q;
	QueueInit(&q);
	QueuePush(&q, root);
	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);

		if (front == NULL)
		{
			break;
		}
		else
		{
			QueuePush(&q, front->left);
			QueuePush(&q, front->right);
		}
	}

🥌2.5.8销毁二叉树

void BinaryTreeDestory(BTNode** root)
{
	if (root == NULL)
	{
		return;
	}
	BTNode* cur = *root;
	BinaryTreeDestory(cur->left);
	BinaryTreeDestory(cur->right);
	free(cur);
	cur = NULL;
}

🎏3.堆的概念及结构

🧧3.1概念

在学习C语言阶段我们有提到栈和堆,在学习数据结构时前面我们有提到栈,这边我们将讲解堆,但数据结构里的栈和堆,他跟操作系统里对内存划分里面的栈和堆没有关系,他们是两个学科里面不同的物种。

如果有一个关键码的集合K = { , , ,…, },把它的所有元素按完全二叉树的顺序存储方式存储
在一个一维数组中,并满足: <= 且 <= ( >= 且 >= ) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
堆的性质:
堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树。

在这里插入图片描述

typedef int HPDataType;
typedef struct Heap
{
	HPDataType* a;
	int size;
	int capacity;
}HP;

🎍3.2堆的实现

接下来的接口实现我们都以大堆为例,小堆只需要把>改成<即可

⛸️3.2.1堆的初始化

void HeapInit(HP* hp)
{
	assert(hp);
	hp->a = NULL;
	hp->size = hp->capacity = 0;
}

🤿3.2.2堆的向上调整

void AdjustUp(int* a, int child)
{
	assert(a);

	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[child] > a[parent])
		{
			swap(a[child],a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

🎨3.2.3堆的插入

void HeapPush(HP* hp, HPDataType x)
{
	assert(hp);
	if (hp->size == hp->capacity)
	{
		size_t newCapacity = hp->capacity == 0 ? 4 : hp->capacity * 2;
		HPDataType* tmp = realloc(hp->a, sizeof(HPDataType)*newCapacity);
		if (tmp == NULL)
		{
			printf("realloc fail\n");
			exit(-1);
		}

		hp->a = tmp;
		hp->capacity = newCapacity;
	}

	hp->a[hp->size] = x;
	hp->size++;

	AdjustUp(hp->a, hp->size - 1);
}

在这里插入图片描述

🥊3.2.4判断堆是否为空

bool HeapEmpty(HP* hp)
{
	assert(hp);

	return hp->size == 0;
}

🎣3.2.5堆的向下调整

//使用条件:左右子数都是小堆
void AdjustDown(int* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n)
	{
		// 选出左右孩子中小的那一个
		if (child + 1 < n && a[child + 1] < a[child])
		{
			++child;
		}

		// 如果小的孩子小于父亲,则交换,并继续向下调整
		if (a[child] < a[parent])
		{
			swap(a[child], a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

🎊3.2.6删除堆顶元素

void HeapPop(HP* hp)
{
	assert(hp);
	assert(!HeapEmpty(hp));

	Swap(&hp->a[0], &hp->a[hp->size - 1]);
	hp->size--;

	AdjustDown(hp->a, hp->size, 0);
}

🧨3.2.7堆的销毁

void HeapDestroy(HP* hp)
{
	assert(hp);
	free(hp->a);
	hp->capacity = hp->size = 0;
}

💎3.3建堆的时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):

在这里插入图片描述
则需要移动节点总的移动步数为∶


T(n)= 2 0 2^{0} 20*(h-1)+ 2 1 2^{1} 21*(h-2)+ 2 2 2^{2} 22*(h-3)+ 2 3 2^{3} 23*(h-4)+…+ 2 h − 2 2^{h-2} 2h2*1①
同乘2 2*T(n) = 2 1 2^{1} 21*(h-1)+ 2 2 2^{2} 22*(h-2)+ 2 3 2^{3} 23*(h-3)+…+ 2 h − 2 2^{h-2} 2h2*2+ 2 h − 1 2^{h-1} 2h1*1②
②-①
T(n) = 1-h+ 2 1 2^{1} 21+ 2 2 2^{2} 22+ 2 3 2^{3} 23+ 2 4 2^{4} 24+…+ 2 h − 2 2^{h-2} 2h2+ 2 h − 1 2^{h-1} 2h1
T(n) = 2 0 2^{0} 20+ 2 1 2^{1} 21+ 2 2 2^{2} 22+ 2 3 2^{3} 23+ 2 4 2^{4} 24+…+ 2 h − 2 2^{h-2} 2h2+ 2 h − 1 2^{h-1} 2h1-h
T(n) = 2 h 2^{h} 2h-1-h
n = 2 h 2^{h} 2h-1 h = l o g 2 ( n + 1 ) log_2(n+1) log2(n+1)
T(n) = n- l o g 2 ( n + 1 ) log_2(n+1) log2(n+1)≈n

讲到这,对二叉树我们就有了一个初步的了解。
🎆🎆🎆🎆🎆🎆🎆🎆🎆🎆🎆🎆🎆🎆🎆🎆🎆
这样的文章你还不快 点赞👍关注💡收藏⭐
🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇

📢:悄悄告诉你长按⭐️可一键三连!

  • 9
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

你帅你先说.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值