1、认识Knn算法
1.1、寻找最近的k个数据,推测出新数据的分类。
1.2、KNN 是 supervised learning, non parametric(无参数) instance-based(基于实例) learning algorithm.
K值选择、距离度量、以及分类决策(一般多数表决)为K近邻算法的三个基本要素。
从上图来看,k值的不同是会产生不同的效果的,当k=2时,为红色三角,当k=5时,为蓝色的正方形。
2、算法原理
2.1、通用步骤
(1)计算距离(常用欧几里得距离或马氏距离)
(2)升序排列
(3)取前k个
(4)加权平均值(当离”我“越近就证明,权重越高,主要的不是分布的排序,主要的是看与目标之间的距离)
2.2、k的选取
(1) k太大:导致分类模糊(例如总共1000个,有800个都是一类的,这样扔一个东西进来大概率是这个类的)
(2)k太小:受个例影响,波动较大 (有的数据是个例的,当k太小就容易受到个例的数据影响)
2.3、如何选取k
(1) 经验(多取值,多试几次)
(2)均方根误差(找到峰值的那个点为k,就如下图中的最高点,由此来进行取值)
3、实战应用
3.1、数集准备
(1)我们使用的是一个癌症的检测数据。数据集地址。提取码:zxmt
3.2、代码的实现`
(1)数据的读取
with open('Prostate_Cancer.csv','r') as file: #打开文件,并以只读的形式进入文件,命名为file
reader = csv.DictReader(file) #将读出的数据以字典的形式呈现
datas = [row for row in reader] #做一个推导,将所有的数据进行抽取
(2)数据分块(分为test和train)
# 2、分组为训练集和测试集 因为数据不多,所以2/3为训练集,1/3为测试集
random.shuffle(datas) #为了避免测试集,训练集的数据一直是那几个,导致算法看起来较为合理,所以,我们使用random将数据进行打乱
n = len(datas)//3 #通过整除的方式,获取整数
test_set = datas[0:n]
train_set = datas[n:]
(3)KNN算法
1、距离(使用欧几里得距离)
#这个函数是用来计算每一个数据到目标数据之间的距离,参数d1表示的是目标数据,在循环中是不需要改变的,d2表示的是不同的数据吗,在一次汇总后是需要不断的进行改变的。
def distance(d1 , d2):
res = 0
for key in ("radius", "texture", "perimeter", "area", "smoothness", "compactness", "symmetry", "fractal_dimension"):
res+= pow((float(d1[key]) - float(d2[key])),2) #因为csv文件读进来是字符串的形式,而我们的数据中同样有整数和浮点,所以我们这里用浮点进行强制转化
return pow(res,0.5)
K = 5 #自己多尝试
def knn(data):
# 1、距离
#这里的形式是,病情分析的结果和与目标数据之间的距离组成
res=[
{"result": train['diagnosis_result'], "distance": distance(data, train)}
for train in train_set
]
2、升序排列
res = sorted(res, key=lambda item:item['distance']) #升序排列,并以distance为参考值
3、取前K个值
res2 = res[0:K]
4、加权平均
result = {'B': 0, 'M': 0} #这里的 0 表示权重
5、计算总距离
sum = 0
for r in res2:
sum+=r['distance']
for r in res2:
result[r['result']]+=1-r['distance']/sum #因为距离越近,权重应该越高,r['distance']/sum表示的是距离占全部的份数,与权重相反,所以要用1进行减法
#对数据进行大小比较,返回病情
if result['B'] > result['M']:
return 'B'
else:
return 'M'
(4)测试
correct = 0
for test in test_set:
result = test['diagnosis_result']
result2 = knn(test)
if result == result2:
correct+=1
print("准确率:{:.2f}%".format(100*correct/len(test_set)))
4、总结
总体而言,knn算法,是通过对目标数据距离较近的数据进行行为总结、分类,然后推断出总体数据的一个大致方向。整体分为,计算距离、升序排列、取前k个数据、加权平均这几个步骤。
参考
https://www.bilibili.com/video/BV1Nt411i7oD?from=search&seid=4603953531395093043