Knn算法学习笔记 —— 癌症检测

1、认识Knn算法

1.1、寻找最近的k个数据,推测出新数据的分类
1.2、KNN 是 supervised learning, non parametric(无参数) instance-based(基于实例) learning algorithm.

K值选择、距离度量、以及分类决策(一般多数表决)为K近邻算法的三个基本要素。

算法示意图
从上图来看,k值的不同是会产生不同的效果的,当k=2时,为红色三角,当k=5时,为蓝色的正方形。

2、算法原理

2.1、通用步骤
(1)计算距离(常用欧几里得距离或马氏距离)
(2)升序排列
(3)取前k个
(4)加权平均值(当离”我“越近就证明,权重越高,主要的不是分布的排序,主要的是看与目标之间的距离)
2.2、k的选取
(1) k太大:导致分类模糊(例如总共1000个,有800个都是一类的,这样扔一个东西进来大概率是这个类的)
(2)k太小:受个例影响,波动较大 (有的数据是个例的,当k太小就容易受到个例的数据影响)
2.3、如何选取k
(1) 经验(多取值,多试几次)
(2)均方根误差(找到峰值的那个点为k,就如下图中的最高点,由此来进行取值)
在这里插入图片描述

3、实战应用

3.1、数集准备
(1)我们使用的是一个癌症的检测数据。数据集地址。提取码:zxmt
3.2、代码的实现`
(1)数据的读取

with open('Prostate_Cancer.csv','r') as file:   #打开文件,并以只读的形式进入文件,命名为file
    reader = csv.DictReader(file)   #将读出的数据以字典的形式呈现

    datas = [row for row in reader]   #做一个推导,将所有的数据进行抽取

(2)数据分块(分为test和train)

# 2、分组为训练集和测试集   因为数据不多,所以2/3为训练集,1/3为测试集

random.shuffle(datas)   #为了避免测试集,训练集的数据一直是那几个,导致算法看起来较为合理,所以,我们使用random将数据进行打乱

n = len(datas)//3   #通过整除的方式,获取整数

test_set = datas[0:n]

train_set = datas[n:]

(3)KNN算法
     1、距离(使用欧几里得距离)

#这个函数是用来计算每一个数据到目标数据之间的距离,参数d1表示的是目标数据,在循环中是不需要改变的,d2表示的是不同的数据吗,在一次汇总后是需要不断的进行改变的。
def distance(d1 , d2):
    res = 0

    for key in ("radius", "texture", "perimeter", "area", "smoothness", "compactness", "symmetry", "fractal_dimension"):
        res+= pow((float(d1[key]) - float(d2[key])),2)     #因为csv文件读进来是字符串的形式,而我们的数据中同样有整数和浮点,所以我们这里用浮点进行强制转化

    return pow(res,0.5)
    K = 5  #自己多尝试
def knn(data):
    # 1、距离
    
    #这里的形式是,病情分析的结果和与目标数据之间的距离组成

    res=[
        {"result": train['diagnosis_result'], "distance": distance(data, train)}
        for train in train_set
    ]

     2、升序排列

res = sorted(res, key=lambda item:item['distance'])   #升序排列,并以distance为参考值

     3、取前K个值

res2 = res[0:K]

     4、加权平均

result = {'B': 0, 'M': 0}   #这里的 0 表示权重

     5、计算总距离

sum = 0
    for r in res2:
        sum+=r['distance']

    for r in res2:
        result[r['result']]+=1-r['distance']/sum    #因为距离越近,权重应该越高,r['distance']/sum表示的是距离占全部的份数,与权重相反,所以要用1进行减法
     
     #对数据进行大小比较,返回病情

    if result['B'] > result['M']:
        return 'B'
    else:
        return 'M'

(4)测试

correct = 0
for test in test_set:
    result = test['diagnosis_result']  
    result2 = knn(test)

    if result == result2:
        correct+=1


print("准确率:{:.2f}%".format(100*correct/len(test_set)))

4、总结

总体而言,knn算法,是通过对目标数据距离较近的数据进行行为总结、分类,然后推断出总体数据的一个大致方向。整体分为,计算距离、升序排列、取前k个数据、加权平均这几个步骤。

参考

https://blog.csdn.net/haluoluo211/article/details/78177510?locationNum=2&fps=1&utm_medium=distribute.pc_relevant.none-task-blog-2defaultbaidujs_title~default-0.essearch_pc_relevant&spm=1001.2101.3001.4242

https://www.bilibili.com/video/BV1Nt411i7oD?from=search&seid=4603953531395093043

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值