- 博客(374)
- 资源 (1)
- 收藏
- 关注

原创 DNA 13. SCI 文章肿瘤突变负荷计算方法(TMB)
基因组生信分析教程DNA 1. Germline Mutation Vs. Somatic Mutation 傻傻分不清楚DNA 2. SCI 文章中基因组变异分析神器之 maftoolsDNA 3. SCI 文章中基因组变异分析神器之 maftoolsDNA 4. SCI 文章中基因组的突变信号(maftools)DNA 5. 基因组变异文件VCF格式详解DNA 6. 基因组变异之绘制精美瀑布图...
2023-03-06 11:37:36
2402

原创 FigDraw 11. SCI 文章绘图之小提琴图 (ViolinPlot)
FigDraw 11. SCI 文章绘图之小提琴图 (ViolinPlot)样式最全面的小提琴图 (ViolinPlot),全网仅桓峰基因提供此教程!
2022-06-04 06:39:14
15360
1
原创 ML 49.机器学习多变量预测危险比曲线(smoothHR)
为了在Cox模型中引入灵活性,可以应用几种平滑方法,在这种情况下,基于样条的方法是最常考虑的。为了更好地理解每个连续协变量对结果的影响,结果可以用基于样条的风险比(HR)曲线表示,以特定的协变量值为参考。尽管在生存分析中使用样条平滑方法具有潜在的优势,但目前在R软件中没有分析方法来选择多变量Cox模型(具有两个或多个非线性协变量效应)的最佳自由度。此外,该软件包还提供了在多变量Cox模型中自动选择自由度的功能。为了更好地理解每个连续协变量对结果的影响,结果以危险比曲线的形式表示,以特定协变量值为参考。
2025-06-11 16:07:30
555
原创 SCS 46.Seurat v5解析单细胞空转数据(Xenium)
在Seurat v5中,引入了对空间数据进行‘生态位’分析的支持,这将组织区域(‘生态位’)划分为由不同相邻细胞类型组成的区域。FindTransferAnchors 可用于整合空间转录组数据集中的点级别数据,而 Seurat v5 还包括对鲁棒细胞类型分解(RCTD)的支持,这是一种计算方法,用于从空间数据集中解卷积点级别数据,当提供单细胞 RNA 测序参考时。结果的Seurat对象将包含每个细胞的基因表达谱、每个细胞的质心和边界以及每个检测到的个体转录本的位置。利用每个细胞的位置信息,计算空间生态位。
2025-05-30 15:28:13
876
原创 百度网盘的数据上传或下载到服务器小技巧
这样就在百度网盘上新建一个目录:/apps/bypy(我的应用数据/bypy) bypy upload [localpath] [remotepath] [ondup] 或 bypy syncup [localdir] [remotedir] [deleteremote] 上传文件到百度网盘 (上传文件会检查文件校验,如果文件是百度已经收录过的,那么就可以做到秒传)再上传一个,会发现嵌套目录了,将数据放到嵌套目录下 /apps/bypy/我的应用数据/bypy/cell_feature_matrix/
2025-05-29 13:53:06
1022
原创 SCS 45.单细胞空转 Imaging-based,Sequencing-based,Visium HD 区别
成像数据可能输出坐标和图像,需要专门的图像处理工具,而测序数据输出的是基因表达矩阵和坐标,可以用常规的单细胞分析工具处理。比如,需要高分辨率但基因数量少的选择成像,需要全转录组但分辨率低的选择测序,而。首先,我需要明确三种技术的核心差异:成像和测序的基本原理不同,导致数据分辨率、基因覆盖、样本处理等方面的差异。同时,要避免使用过于专业的术语,保持解释的清晰易懂,确保用户能够理解不同技术之间的核心差异和应用场景。的区别,比如分辨率提升到细胞级别,但依然基于测序,兼容性如何,样本处理是否有特殊要求等。
2025-05-21 15:09:07
605
原创 ML 48.机器学习之临床生存树(rpartSurv)
机器学习中生存树(Survival Tree)的原理详解 生存树是结合决策树与生存分析的机器学习模型,主要用于处理带有时间-事件数据(包含删失数据)的预测问题。示例: 在每个候选分裂点,计算左右子节点的Kaplan-Meier曲线,通过对数秩检验的p值评估差异显著性,选择p值最小的分裂点。预测输出 风险评分(Risk Score):每个叶节点的样本具有相似的风险水平,可通过中位生存时间或累积风险函数描述。对数秩检验(Log-Rank Test):比较左右子节点生存曲线的差异,选择统计量最大的分裂点。
2025-05-20 15:04:31
827
原创 SCS 44.单细胞的配体和受体相互作用(Celltalker)
celltalker的目标是从单细胞RNAseq数据中推断出假设的配体和受体相互作用。这是通过评估已知的同源配体/受体在细胞群中的相互作用来完成的。通过共同加权配体和受体的表达水平来对相互作用进行评分,并通过比较混乱的配体和受体的背景分布来评估意义。SeuratData人类骨髓细胞。确定统计上最显著的相互作用。运行celltalker。
2025-05-08 14:15:46
275
原创 Clone 13.肿瘤重建转移瘤系统发育的计算工具(Treeomics)
最小AD(等位基因深度)必须在FORMAT列中提供,然后在每个样品的相应列中提供实际观察到的参考和备用等位基因的数量)。生成的输出可以在‘output/example_output ’中找到,相应的Treeomics报告位于 [output/example_output/example_6_e=0_01_c0=0_5_af=0_05_report.pdf](output/example_output/example_6_e=0_01_c0=0_5_af=0_05_report.pdf)。
2025-05-06 16:32:33
953
原创 Clone 12.肿瘤克隆进化的单细胞分辨率(Uphyloplot2)
生成标准的bed文件格式,注意其实位点是0,所以这个文件需要Start减1,利用bedtools window 合并两个文件,保留文件里面的所有注释信息,这个后面我们需要利用注释信息找到每个tree的CNV突变区域。输入文件包括四个:counts_matrix,annotations_file,gene_order_file,ref_group_names。可以看到结果文件有三列,第一列表示树的结构,第二列表示权重值,第三列表示节点,那么我们想知道每个树枝里面有哪些突变,这个问题该怎么解决?
2025-04-22 11:02:39
1011
原创 Clone 11.肿瘤克隆关系分析与鸽巢原理应用
*亚克隆(Subclone)**:在原始克隆基础上获得新突变的子群体。假设:如果N个区域中观察到的克隆总数超过M个基础克隆,则必须存在亚克隆。**克隆(Clone)**:具有相同基因突变的癌细胞群体。推论:当总观测克隆数 > 基础克隆数时,必存在亚克隆。聚类分析函数(识别每个区域的潜在克隆)基于鸽巢原理推断克隆-亚克隆关系。:不同肿瘤区域包含不同克隆组成。移动平均滤波 + 异常值检测。运行sciclone检测聚类。物体 = 观测到的克隆特征。肿瘤克隆分析的核心方法论。区分真实亚克隆与测序误差。
2025-04-10 16:04:24
413
原创 Omics 3.多组学单细胞分析识别了调控产后大脑的关键调节因子赠送代码
为了提高我们对出生后大脑发育的理解,我们同时分析了来自10个供体的4个大脑区域的101924个单核的基因表达和染色质可及性,涵盖了从婴儿期到成年后期的5个关键出生阶段。利用该数据集和染色体构象捕获数据,我们构建了基于增强子的基因调控网络,以鉴定大脑发育的细胞类型特异性调控因子,并解释十种主要大脑疾病的全基因组关联研究位点。我们的分析将2318个细胞特异性位点与1149个独特基因联系起来,代表了与所研究性状相关的41%的位点,并突出了55个影响几种疾病表型的基因。
2025-04-07 14:17:57
348
原创 Omics 2.多组学相互作用Sankey复现赠送代码
微生物网络分析显示ASD的重新布线和稳定性降低。宿主蛋白质组学分析显示,参与神经炎症和免疫调节的蛋白发生了改变,包括钾化因子(KLK1)和转甲状腺素(TTR)。:多组学数据的整合提供了关键证据,表明肠道微生物群的改变和相关大分子的产生可能在ASD相关症状和合并症中发挥作用。:本研究利用多组学方法,通过检测微生物多样性、细菌元蛋白、相关代谢途径和宿主蛋白质组,揭示肠道微生物群与ASD之间的联系机制。:肠道微生物群的改变与自闭症谱系障碍(ASD)有关,但将这些变化与ASD病理生理联系起来的机制尚不清楚。
2025-03-31 14:37:21
913
原创 IF 11+多组学分析揭示自闭症谱系障碍的独特微生物大分子相互作用赠送代码
多组学数据的整合提供了关键证据,表明肠道微生物群的改变和相关大分子的产生可能在ASD相关症状和合并症中发挥作用。本研究通过整合多组学数据,揭示了ASD中肠道微生物通过代谢物和蛋白质与宿主神经/免疫系统的独特互作模式,为理解ASD病理机制和开发新型诊疗工具提供了重要依据。综合多组学整合:基因组学、宏蛋白质组学和代谢组学的整合提供了肠道微生物群的综合组合,揭示了与ASD相关的潜在大分子产生。:肠道微生物群的改变与自闭症谱系障碍(ASD)有关,但将这些变化与ASD病理生理联系起来的机制尚不清楚。
2025-03-28 19:23:50
782
原创 Omics 1.多组学分析工具(mixOmics)
多变量方法非常适合具有许多变量(例如,基因,蛋白质)和少量样本(例如,患者,细胞)的大型组学数据集。这些组件可用于产生清晰的可视化,揭示与生物学结果相关的关键变量,并集成多组学数据集。mixOmics是一个R包,用于探索和整合组学数据,包括转录组学,蛋白质组学,脂质组学,微生物组学,宏基因组学等。mixOmics软件包包括用于数据集成、生物标志物发现和数据可视化的工具,使用先进的多变量方法来降低数据维度并揭示数据集内部和数据集之间的关系。整合多组学数据构建分子相互作用网络,识别功能模块。
2025-03-27 11:48:08
1149
原创 IF:36+ 全基因组关联分析与孟德尔随机化揭示了痛风的新致病途径送代码
在这里,我们从260万人的全基因组关联研究(GWAS)中提供了对痛风炎症成分知之甚少的分子机制的见解,其中包括120,295人患有普遍痛风。我们检测到377个基因座和410个基因独立的信号(149个以前未报道的基因座在尿酸和痛风中)。一项优先方案确定了痛风炎症过程中的候选 基因,包括参与表观遗传重塑、细胞渗透压和NOD样受体蛋白3(NLRP3)炎症小体活性调节的基因。本研究通过GWAS揭示了痛风的新遗传机制,强调炎症通路与尿酸代谢的协同作用,为精准医疗提供了新靶点。
2025-03-14 12:35:28
825
原创 Clone 10.深度解析单样本肿瘤亚克隆重建的众包基准评测
1.1文章基本信息标题:Crowd-sourced benchmarking of single-sample tumor subclonal reconstruction作者: 多机构联合团队(包括Quentin Fottrell等)期刊:Nature Biotechnology发表时间: 2023年DOI:10.1038/s41587-023-01747-2研究领域: 肿瘤基因组学、计...
2025-03-13 16:41:14
879
原创 Clone 9.基于贝叶斯统计方法推断癌症的克隆群体结构(PyClone-VI)
目前桓峰基因推出肿瘤克隆进化分析的教程非常丰富,但是还会有不断的方法和改进出现,今天就分享一下PyClone升级后软件PyClone-vi,对比一下有什么优缺点以及如何使用?软件介绍背景:在诊断时,肿瘤通常由基因组不同的恶性细胞群的混合物组成。肿瘤样本的大量测序与计算反褶积耦合可用于识别这些人群和研究癌症进化。现有的种群反褶积计算方法在应用于由全基因组测序数据生成的大型数据集时是缓慢和可能不准确的...
2025-03-12 14:38:36
688
原创 MR 5.影像组学与孟德尔随机化揭示阻塞性睡眠呼吸暂停与大脑结构和功能的改变...
深度解析:影像组学与孟德尔随机化揭示阻塞性睡眠呼吸暂停与大脑结构和功能的改变1.1文章基本信息标题:Obstructive sleep apnea and structural and functional brain alterations: a brain-wide investigation from clinical association to genetic causality作者...
2025-03-11 11:23:44
752
原创 MR 4.全基因组关联与孟德尔随机化联合分析送代码
1.1文章基本信息标题:Genome-wide association study unravels mechanisms of brain glymphatic activity作者: Huang, SY., Ge, YJ., Ren, P. et al.期刊: nature communications影响因子: 14+发表日期: 2025年1月DOI:10.1126/sciadv.a...
2025-03-10 12:26:07
908
原创 MR 3. 多组学与孟德尔随机化分析揭示动脉粥样硬化性心血管疾病的潜在治疗靶点...
1.1文章基本信息标题:(Apo)Lipoprotein Profiling with Multi-Omics Analysis Identified Medium-HDL-Targeting PSRC1 with Therapeutic Potential for Coronary Artery Disease.期刊:Adv Sci发表日期: 2025年2月影响因子: 14 +研究类型: 多...
2025-03-06 13:23:19
1041
原创 MR 2. 单细胞测序数据与孟德尔随机化分析揭示褪黑素在缺血性中风的靶点
1.1文章基本信息标题:Integrated analysis of single cell-RNA sequencing and Mendelian randomization identifies lactate dehydrogenase B as a target of melatonin in ischemic stroke研究领域:缺血性中风、褪黑素机制、单细胞组学与遗传学整合分析...
2025-03-05 13:36:33
947
原创 MR 1. 孟德尔随机化在生物医学研究中的应用概述
01·概 述·孟德尔随机化(Mendelian Randomization, MR)是一种利用遗传变异作为工具变量(Instrumental Variables, IVs)推断暴露因素(Exposure)与结局(Outcome)之间因果关系的统计方法。其核心思想基于孟德尔遗传定律,通过基因型随机分配的特性模拟随机对照试验(RCT),从而减少混杂偏倚和反向因果的影响。02·发展历程·19...
2025-03-03 12:29:04
1317
原创 IF 27+ 典型单基因泛癌多组学无实验高分神做法
这期分享一篇2024年4月发表在 IF 27+ Mol Cancer 的文章Mutation of neurotrophic tyrosine receptor kinase can promote pan-cancer immunity and the efficacy of immunotherapy.,神经营养酪氨酸受体激酶突变可促进泛癌免疫,提高免疫治疗效果。摘 要 神...
2025-02-25 19:05:44
803
原创 IF 14 两个模型搞定肝细胞癌诊断和预测生物标志物
这期分享一篇2025年2月发表在 IF 14+ Clin Mol Hepatol 的文章GULP1 as a Novel Diagnostic and Predictive Biomarker in Hepatocellular Carcinoma.,GULP1作为一种新的肝细胞癌诊断和预测生物标志物。摘 要背景: 肝细胞癌(HCC)的特点是高复发率和死亡率,需要确定可靠的生物标志物。在本研究...
2025-02-21 15:27:41
1116
原创 IF 6+ 8种机器学习算法构建HCC预后模型赠送代码
这期分享一篇2024年9月发表在 6.8/Q1 NPJ Precision Oncology 的文章 Immune-related cell death index and its application for hepatocellular carcinoma,免疫相关细胞死亡指数及其在肝癌中的应用。摘 要调节细胞死亡(RCD)在肝细胞癌(HCC)的免疫微环境、发展和进展中起着至关重要的作用。...
2025-02-11 15:01:13
1262
原创 IF 6+ 10种机器学习算法预测预后和指导治疗的肝细胞癌的新预后特征
这期分享一篇2024年9月发表在 IF 6+ Frontiers in lmmunology 的文章 Novel prognostic signature for hepatocellular carcinoma using a comprehensive machine learning framework to predict prognosis and guide treatment,作者使...
2025-01-13 22:01:54
1159
原创 IF2. 综述癌症的进化理论:挑战和潜在的解决方案
这期分享一篇2024年9月发表在 Nature Reviews Cancer 的文章 The evolutionary theory of cancer: challenges and potential solutions,作者综述癌症的进化理论:挑战和潜在的解决方案。摘 要癌症的克隆进化模型是在20世纪50 - 70年代发展起来的,并在21世纪成为癌症生物学的核心,主要是通过对癌症遗传学的...
2024-12-26 12:56:24
1049
原创 IF1. 综述肿瘤进化作为治疗靶点
这期分享一篇发表在 AACR 的文章,作者综述肿瘤进化作为治疗靶点。摘 要分子诊断领域的最新技术进步(包括基于血液的肿瘤基因分型)允许测量癌症患者的克隆进化,从而为精准医学增加了一个新的维度:时间。将这些新知识转化为临床益处意味着重新思考治疗策略。从本质上讲,这意味着不仅要考虑单个致癌基因,还要考虑人类肿瘤的进化性质。在这里,分析了靶向治疗的局限性,并提出了在进化框架内治疗的方法。在日常医疗实...
2024-12-24 11:58:50
1202
原创 RNA 49. 基于转录组分析sQTL和异构体的关系(DRIMSeq)
介 绍在基因组数据分析中有许多实例,其中测量是在多变量响应上进行的。例如选择性剪接可以导致相同的主要转录物产生多个表达的同种异构体。在某些情况下,表达的亚型的相对比例的差异(例如,正常状态和疾病状态之间的)可能具有显著的表型后果或导致预后能力。同样,了解影响剪接的单核苷酸多态性 (SNP),即所谓的剪接数量性状位点 (sQTL) 将有助于表征遗传变异对基因表达的影响。RNA测序(RNA-seq...
2024-12-13 12:50:44
744
原创 DNA 19. SCI 文章用于群体结构分析(admixture)
简 介群体分层长期以来被认为是遗传关联研究中的一个混淆因素。根据多基因座基因型数据估算的祖先可用于对种群分层进行统计校正。一种流行的估算祖先的技术是基于模型的方法,它体现在广泛应用的程序结构中。在程序 EIGENSTRAT 中实现的另一种方法依赖于主成分分析,而不是基于模型的估计,并且不直接提供混合物分数。EIGENSTRAT 已获得的普及,部分原因是由于其显著的速度相比结构。我们提出了一种...
2024-12-06 13:21:29
1059
原创 IF:5+ ONT全长和bulk转录组快速发文代码随心配
这期分享一篇2023年10月发表于Communications Biology(IF 5+)的文章,作者基于纳米孔长读RNA测序揭示了人类血管平滑肌细胞的功能选择性剪接变体。该文章使用桓峰基因公众号里面生信分享教程即可实现,有需要类似思路的老师可以联系我们!摘 要血管平滑肌细胞(VSMCs)是血管修复和重塑的主要贡献者,表现出高度的表型可塑性。VSMC 可塑性异常可导致多种心血管疾病,其中选择...
2024-11-25 18:20:22
784
原创 RNA 48. 基于转录组识别可变剪切和异构体开关(IsoformSwitchAnalyzeR)③
全基因组分析总结全基因组分析包括两个方向:全基因一致序列分析全基因可变剪切分析global consequence analysisextractConsequenceSummary()extractConsequenceEnrichment()extractConsequenceGenomeWide()global splicing analysisextractSplicingSummar...
2024-11-21 14:28:07
992
原创 RNA 47. 基于转录组识别可变剪切和异构体开关(IsoformSwitchAnalyzeR)②
导入外部序列分析外部序列分析包括五个方向,从蛋白质结构域的预测到蛋白质拓扑结构的预测。Pfam(Prediction of protein domains):蛋白质结构域的预测编码潜力分析工具:CPC2(The Coding Calculator 2):编码计算器2CPAT(The Coding-Potential Assessment Tool):编码潜力评估工具SignalP(Predicti...
2024-11-20 13:22:46
1040
原创 ML 46. 机器学习之利用SHAP解释模型特征变量的重要性
简 介在许多应用中,理解一个模型为什么会做出某种预测是至关重要的。然而,对于大型现代数据集,最好的准确性通常是通过复杂的模型来实现的,即使专家也很难解释,比如集成或深度学习模型。这造成了准确性和可解释性之间的紧张关系。作为回应,最近提出了各种方法来帮助用户解释复杂模型的预测。在这里,我们提出了一个统一的框架来解释预测,即SHAP (SHapley Additive exPlanations),它...
2024-10-25 14:56:54
1371
2
原创 IF 14+ 系统性解剖30种癌症的1000个肿瘤的肿瘤-正常单细胞生态系统
这期分享一篇2024年5月发表于 Nat Commun (IF 14+)的文章,作者基于系统解剖肿瘤-正常单细胞生态系统横跨30种癌症类型的1000个肿瘤。该文章使用桓峰基因公众号里面生信分享教程即可实现,有需要类似思路的老师可以联系我们!摘 要肿瘤微环境的复杂性对肿瘤治疗提出了重大挑战。在这里,为了全面研究肿瘤-正常生态系统,我们对来自 1070 个肿瘤和 493 个正常样本的 490 万...
2024-10-17 11:08:59
884
原创 IF 25+ 单细胞测序揭示胆囊癌发病机制中的微环境动力学和免疫调节因子
这期分享一篇2024年8月发表于 Gut (IF 25+) 的文章,作者基于单细胞测序揭示胆囊癌发病机制中的微环境动力学和免疫调节因子。该文章使用桓峰基因公众号里面生信分享教程即可实现,有需要类似思路的老师可以联系我们!摘 要**目的:**了解胆囊癌及胆囊良性疾病的复杂生态系统和分子特征,是开展前瞻性癌症预防和优化治疗干预的关键。**设计:**我们对来自 15 例 GBCs、4 例胆囊炎、...
2024-10-15 10:51:49
834
原创 IF 10+ 泛癌症单细胞转录图谱上癌症相关成纤维细胞的分子分类
这期分享一篇2023年10月发表于 Clin Transl Med (IF 10+) 的文章,泛癌症单细胞转录图谱上癌症相关成纤维细胞的分子分类。该文章使用桓峰基因公众号里面生信分享教程即可实现,有需要类似思路的老师可以联系我们!摘 要背景:肿瘤相关成纤维细胞 (CAFs) 是肿瘤微环境不可或缺的一部分,在癌症进展中起着关键作用,表现出促肿瘤或抗肿瘤的功能。其固有的表型和功能多样性允许将 ...
2024-10-14 10:51:01
1097
原创 IF 10+ 11种ML识别和验证危重儿童急性肾损伤可解释预测模型。
这期分享一篇2024年2月发表于 eClinicalMedicine (IF 10+) 的文章,基于11种机器学习方法识别和验证危重儿童急性肾损伤可解释预测模型。摘 要背景:急性肾损伤 (Acute kidney injury, AKI) 是危重儿童常见的严重器官功能障碍。AKI 的早期识别和预测具有重要意义。然而,目前的 AKI 标准不够敏感和特异性,而且 AKI 的异质性限制了 AKI ...
2024-10-12 09:35:06
883
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人