- 博客(429)
- 资源 (1)
- 收藏
- 关注
原创 DNA 13. SCI 文章肿瘤突变负荷计算方法(TMB)
基因组生信分析教程DNA 1. Germline Mutation Vs. Somatic Mutation 傻傻分不清楚DNA 2. SCI 文章中基因组变异分析神器之 maftoolsDNA 3. SCI 文章中基因组变异分析神器之 maftoolsDNA 4. SCI 文章中基因组的突变信号(maftools)DNA 5. 基因组变异文件VCF格式详解DNA 6. 基因组变异之绘制精美瀑布图...
2023-03-06 11:37:36
2832
原创 FigDraw 11. SCI 文章绘图之小提琴图 (ViolinPlot)
FigDraw 11. SCI 文章绘图之小提琴图 (ViolinPlot)样式最全面的小提琴图 (ViolinPlot),全网仅桓峰基因提供此教程!
2022-06-04 06:39:14
17209
1
原创 IF 13 具有免疫调节特性的头颈部癌边缘区B细胞的鉴定
在HNSCC中检测到MZB-2、生发中心B细胞(GCB)和CD4+滤泡辅助T细胞(Tfh)的共定位,提示存在肿瘤内MZB-Tfh-GCB轴。(b-d) 代表性流式细胞术图谱,展示了在分离的HNSCC肿瘤样本中鉴定边缘区B细胞(MZB)(b)、边缘区浆细胞(MZP)(c)和生发中心B细胞(GCB)(d)的门控策略,以及按临床参数(HPV状态、AJCC临床分期、T分期和肿瘤位置)分布的细胞情况。基于我们先前的研究结果,本研究旨在验证HNSCC中MZB的存在,并探讨其在肿瘤发生和预后中的潜在意义。
2026-01-08 14:39:34
939
原创 桓峰基因公众号推出单细胞生信分析教程
桓峰基因公众号推出单细胞生信分析教程并配有视频在线教程,目前整理出来的相关教程目录如下:单细胞生信分析教程。
2026-01-07 14:52:20
657
原创 IF 单细胞空间组学 (VisiumHD + Xenium)搞定Nature高分
最近的研究表明,肠道TRM细胞表现出功能异质性,在小肠急性感染应答中已鉴定出至少两种不同的状态:一种是更终末分化的TRM细胞群,另一种是类似祖细胞的群。我们进一步展示了在体内环境中进行多路复用、光学编码的空间CRISPR敲除实验的可行性,以探索免疫细胞分化过程中的细胞因子梯度,并扩展我们在小肠中T细胞分化的模型。我们的研究揭示了肠道结构的区域性信号支持两种不同的TRM细胞状态:位于绒毛上部的分化型TRM细胞和位于绒毛下部的祖细胞样TRM细胞。该阈值对应校正P值约1×10⁻¹² 至 1×10⁻¹⁰;
2025-12-22 14:23:39
988
原创 IF 14+单细胞多组学鉴定代谢相关表观遗传重编程是治疗抵抗性髓母细胞瘤的驱动因素
为研究本研究中的耐药机制,我们对配对的原发性和复发性肿瘤进行了单核多组学分析。F 按细胞状态的峰可及性轮廓,具有代表性基因和 HLX)的近端基因连接,这些基因代表原发肿瘤和复发肿瘤中变化的细胞状态。专门用于scATAC-seq数据的分析:识别染色质可及性峰、降维、聚类、构建基因活性矩阵、识别差异可及区域。C Vehicle、IDH1−13组、Vehicle+IR和IDH1−13+放疗组肿瘤体积的箱线图。单细胞数据的标准分析流程:质控、标准化、降维(PCA/UMAP)、聚类、差异表达分析、细胞注释。
2025-12-17 13:46:13
347
原创 SCS 60.单细胞空间转录组空间聚类(SPATA2)
SPATA2 提供了多种聚类算法的封装。那些会立即将结果添加到 SPATA2 对象中的聚类算法,其名称以 run-* 开头,并以 *-Clustering() 结尾。参数名称或命名指定了输出分组变量的名称。聚类可能由多种聚类算法产生。如果这些算法未在SPATA2函数中实现,可以使用addFeatures()函数将它们添加进去。唯一的要求是有一个名为barcodes的变量,用于将组映射到观测值。分组变量将样本的观测值划分为可以相互比较属性的组。例如,观测值的分组可以是聚类算法的结果或手动空间分割的结果。
2025-12-16 15:02:56
313
原创 SCS 59.单细胞空间转录组空间度量(SPATA2)
以Visium平台为例,如果将10X Visium输出中的tissue_lowres_image.png替换为tissue_hires_image.png,条形码斑点的坐标会相应缩放,以确保坐标与图像保持对齐。例如,“坏死区域的面积约为400像素”这一说法是没有意义的。本教程将解释SPATA2如何通过像素比例因子计算Visium平台从像素到SI单位的转换,并提供关于如何利用SI距离进行工作的示例。在10X Visium的情况下,此真实值是两个相邻条形码点之间的中心到中心距离,该距离始终为100微米。
2025-12-15 14:42:52
436
原创 SCS 58.单细胞空间转录组GSEA(SPATA2)
如果您不希望对某些基因集进行测试,可以提供一个子集化的基因集列表。默认示例对象 object_t269 是通过 initiateSpataObjectVisium() 创建的,其中包含多种类别的多个基因集(如 Hallmark、Biocarta 等),这些基因集均带有相应的前缀(如 HM 或 BC)。getGseaResultsDf() 会提取一个数据框,该数据框是将所有 hypeR 对象的数据合并后的结果。要更深入地了解差异表达分析(DEA)的结果,可以查找在所提出的聚类中富集或基于组织学创建的基因集。
2025-12-11 13:30:18
365
原创 SCS 57.单细胞空间转录组差异表达分析(SPATA2)
首先,getDeaResultsDf() 返回 Seurat::FindAllMarkers() 生成的原始结果数据框。使用 across_subset、min_lfc、n_highest_lfc、max_adj_pval 和 n_lowest_pval 这些参数,可以将函数的输出调整为特定的问题。plotDeaHeatmap() 通过使用 getDeaResultsDf() 提取的结果来可视化 DEA 的结果。getDeaGenes() 返回的基因名称向量是其他绘图函数的有效输入。
2025-12-08 15:43:10
632
原创 SCS 56.单细胞空间转录组CNV分析(SPATA2)
与所有以run*()为前缀的其他函数一样,函数runCNV()是围绕进行拷贝数变异分析所需的所有必要函数的包装器。每个染色体拷贝数变异所代表的数值立即传输到SPATA2对象的特征数据中,因此所有处理数值变量的函数都可以访问这些数值。此外,您还可以对要显示的染色体进行子集划分,以及选择要在其中展示结果的组别。runCNV() 默认使用此列表的内容。如果您希望的设置与默认设置不同,可以通过输入推理管道(inferncnv pipeline)中任何功能的名称作为参数来调用它,并指定您希望传递给它的输入参数列表。
2025-12-05 13:43:05
246
原创 SCS 55.单细胞空间组织病理学图像分割(SPATA2)
点击“添加分割变量”后,该变量会在元数据框(meta data.frame)中被创建,且所有值默认为“未命名”。由于新的空间分割变量与其他分组变量一样是元特征,因此适用于它的规则和选项与这些分组变量相同,包括getGroupNames()、renameGroups()和relevelGroups()。在转录组学研究中,分组变量通常由聚类算法生成,并以因子的形式存储在元数据框(meta data.frame)中。空间分割,有时也称为手动标注,是指创建分组变量,根据图像的组织形态学特征为每个观测值分配标签。
2025-10-17 13:47:02
576
1
原创 SCS 54.单细胞空间Surface Plotting(SPATA2)
您可以使用 ggpLayerGroupOutline() 函数来突出显示来自相同分组变量或其他分组变量的组的空间范围。SPATA2中实现的颜色色谱可通过validColorSpectra()获取,并通过showColorSpectra()进行检查。在后台,它们是散点图,其中图表的x美学和y美学被映射到相应的坐标变量。SPATA2提供了多种功能和选项,用于在组织样本表面可视化基因或其他变量的表达情况。为了快速比较同一类变量的空间分布,请使用plotSurfaceComparison()。
2025-10-13 14:46:40
340
原创 SCS 53.单细胞空间分子变量筛选(SPATA2)
这些分子的名称可以存储在SPATA2对象的分子实验中,并使用getMolecules()函数(需要指定assay_name参数,默认为当前活动实验,如果对象中只有一个实验则不相关)或使用“包装函数”getGenes()、getProteins()和getMetabolites()提取,具体取决于实验的分子模式。要向SPATA2对象(例如带有基因表达测定的UKF269T对象)添加分子特征或基因集,可以使用addSignature()或其特定模式的函数如addGeneSet()。
2025-09-23 16:46:14
522
原创 SCS 52.单细胞空间轨迹筛选(SPATA2)
观察变量LEPROT(随机,蓝色)和SHISA5(非随机,红色)的梯度,两者都呈现出沿轨迹下降的模式。空间梯度筛选通过计算梯度上的方差来决定哪些变量最可能是随机或非随机的,这个方差存储在sts_out@results$significance中的tot_var变量中。第二步将非随机基因表达模式拟合到预定义的模型中,这有助于解释和筛选特定的基因表达模式。这使得能够进行监督、假设驱动的空间模式筛选,与差异表达分析(DEA)不同,它承认基因表达的连续性并避免基于组的测试的局限性。3.1.非随机基因表达梯度。
2025-09-16 14:24:11
726
原创 SCS 51.单细胞空间注释(SPATA2)
如果处于绘图模式,单击“Highlight”以高亮显示圈定区域,输入要用于注释的标签,输入要用于命名注释的ID,并点击“Add Image Annotation”。提供了一个灵活的框架,用于创建视觉上突出图像中特定区域的注释,例如组织学结构、细胞模式或其他图像组织形态特征。空间注释代表用于空间数据的注释。数值注释旨在通过根据特定数值变量的值过滤和勾勒数据点的空间范围,如细胞或barcode。这特别适合于创建突出显示基于连续特征(如基因表达或其他从空间多组学数据集中得出的数值属性)的感兴趣区域的注释。
2025-09-15 19:48:49
571
原创 SCS 50.单细胞空间聚类 | Cellular Neighborhood | Cell Niche
这个列表为你提供了强大的工具组合,可以根据你的技术背景和具体科学问题来选择最佳的工具或工具组合。:当你对某一特定细胞类型(如治疗耐药细胞、罕见细胞类型)感兴趣时,生态位分析非常强大。通过分析,可以将特定细胞类型(如所有癌细胞)根据其周围环境的差异分为不同的亚型(如。这些群体可能是已知的细胞类型,也可能是由于微环境诱导的。,整合了从图像处理、细胞分割到细胞类型识别和邻域分析的多种工具。中的自定义脚本,以特定细胞类型为中心定义其微环境并进行聚类。:识别出反复出现的、由特定比例的不同细胞类型构成的。
2025-09-08 11:11:55
475
原创 软件安装系列: RbioRXN的安装及Debug
它提供了一系列工具来处理生化反应,包括反应网络的构建、可视化、模拟以及分析。主要功能: 反应网络构建:允许用户从各种数据源(如SBML文件、数据框或列表)导入或创建反应网络。动力学模拟:支持基于常微分方程(ODE)的动力学模拟,用户可以模拟底物浓度随时间的变化。数据导入导出:可以导入标准格式(如SBML)的反应网络,也可以将网络导出为多种格式。反应网络可视化:提供函数来绘制反应网络,帮助用户直观地理解反应路径和代谢网络。通量平衡分析(FBA):支持对代谢网络进行通量平衡分析,用于预测代谢通量分布。
2025-09-04 11:25:16
436
原创 IF 14.1+ 铁过载驱动衰老与代谢重编程在卵巢子宫内膜异位症相关性不孕中的作用
A、C、E、G、H)箱形图和空间可视化图展示了铁过载卵巢和阴性对照卵巢中细胞衰老、炎症反应、对DNA损伤刺激的负调控、脂质储存和应答未折叠蛋白的基因特征的全局分布密度。A)实验设计示意图。热图显示不同年龄组中不同细胞类型的富集情况,通过观察到的细胞计数与预期细胞计数的比率进行估算,并使用卡方检验进行分析。I)在七种细胞类型中,OE组和CON组上调的DEGs和下调的DEGs的代表性KEGG通路进行了比较。在样本中,铁积累特征与髓系细胞子簇中的M1样、M2样、血管生成和吞噬特征基因之间的皮尔逊相关性。
2025-08-22 13:39:50
1129
原创 IF 19.4+ 单细胞与空间转录组学技术构建小鼠动脉粥样硬化中衰老血管细胞的动脉重塑图谱
传统的衰老标志物CDKN1A、GDF15和LMNB1 mRNA以及新的衰老标志物SPP1、SERPINE2、CTS B、FTH1和THBS1 mRNA通过RT- qPCR分析进行测定。i-l. 通过空间测序在核心与正常壁之间识别出的RNA的火山图表示,涵盖所有条件的每个 ROI,比较管壁、核心、中膜和正常壁中衰老消除剂和动脉粥样硬化条件。采用Bio-Plex分析ND、HFD和HFD+ABT-737组小鼠血清中循环的SERPINE1、CD93、ICAM-1、BAFF、MMP3和CXCL1。
2025-08-21 17:19:44
1167
原创 IF 44.5+ 单细胞+空间转录组揭示胰腺癌中介导神经侵袭的独特细胞亚群
神经在肿瘤生物学中起着至关重要的作用,但神经周围和神经内的微环境及其在癌症神经侵袭中的作用仍鲜为人知。三级淋巴结构在低NI肿瘤组织中丰富,并与未侵袭的神经共定位,而在高NI组织中,NLRP3+巨噬细胞和癌相关肌成纤维细胞则环绕着被侵袭的神经。(M)该图展示了与神经退行性疾病相关的基因得分情况,该得分是通过先前报道的与NI相关的基因的表达情况计算得出的,涵盖了恶性亚群。图形摘要展示了在胰腺导管腺癌中,未受侵袭和已受侵袭的神经周围及内部的免疫细胞、基质细胞、恶性细胞和施万细胞的子群体分布情况。
2025-08-20 13:11:31
403
原创 IF 48.5+ 空间转录组学揭示人类皮质层及区域的特化
值得注意的是,我们在妊娠中期发现了两种不同的皮质区域特化模式:(1)在大多数皮质区域沿前后轴观察到的连续、渐进的过渡;f、g. 总结热图表明,EN-ETs中富含V1的基因集随着时间的推移比EN-ITs更稳定,而EN-ITs 中富含V2的基因集随着时间的推移比富含V1的基因集更稳定。b、c,针对视觉皮层中选定的EN亚型的空间图显示,在GW20时V1和V2之间有一个明显的边界,该边界由EN亚型的急剧转变所标记。f,面积分布的直方图显示,V2富集的亚型在其他皮质区域广泛分布,而V1富集的亚型仅存在于视觉皮层中。
2025-08-19 13:38:10
851
原创 SCS 49.单细胞空间测序FOV定义与应用
实际应用中,FOV相关的痛点可能包括:多FOV拼接时的图像配准问题、边缘细胞数据丢失、不同批次间的差异等。在基于点阵捕获的技术(如 Visium, Slide-seq)中,FOV 大小和捕获点(spots/barcodes)的数量决定了点与点之间的距离(spot center-to-center distance),这定义了该技术的理论空间分辨率极限(一个点捕获的信号通常来自其周围的多个细胞)。更大的 FOV 意味着单次采集能覆盖更多组织,提高通量,减少扫描整个大样本所需的 Tile 数量和时间。
2025-08-19 10:15:15
915
原创 IF 16.6+ 肿瘤中树突状细胞的单细胞泛癌分析
E 散点图显示了候选靶标表达水平在肿瘤中的排名和平均对数2倍变化,以及在肿瘤细胞与相邻正常组织细胞之间的比较中基因按照x轴上的平均对数变化顺序排列。A 三元图展示了cDC1、cDC2和LC类似细胞特征基因在cDC1细胞、cDC2细胞、LC类似亚群以及 LAMP3+树突状细胞中的得分情况。数据代表了两个独立实验的结果。B 箱形图展示了与淋巴细胞相似的细胞子集所占的比例对四种癌症类型的肿瘤及其相邻正常组织进行了分析。C 散点图展示了cDC1来源的LAMP3+树突状细胞的比例与CD8+T细胞比例之间的相关性。
2025-08-18 12:15:57
414
原创 IF 13+ 单细胞分析在肺癌免疫治疗中的应用:当前进展、新挑战与展望
肿瘤免疫疗法的发展,特别是免疫检查点抑制剂和适应性T细胞疗法,由于小细胞肺癌的快速进展以及非小细胞肺癌的转移、复发和耐药性而遭遇了重大障碍。综述中的关键科学概念 该综述强调了单细胞分析在绘制非小细胞肺癌患者体内免疫细胞分布、揭示循环肿瘤细胞以及阐明肿瘤微环境异质性方面的重要性。值得注意的是,这些进展突显了单细胞分析在通过描述免疫细胞的命运、改进治疗策略以及识别有前景的靶点或预后生物标志物来革新肺癌免疫治疗方面的潜力。C. CTC簇在癌症转移中的作用示意图,以及利用单细胞测序技术检测和分析CTC的过程。
2025-08-15 21:17:29
781
原创 IF 15.7+ 空间转录组测序揭示了非小细胞肺癌中的空间轨迹
肺癌是全球第二常见的癌症,也是癌症相关死亡的首要原因。在我们的研究中,我们通过单细胞和空间转录组学对25名未经治疗的腺癌和鳞状细胞癌患者的约90万个细胞进行了分析。A 图片展示了由cell2location算法估算的AT2细胞、AIMɸ细胞和调节性T细胞在代表性肿瘤切片中的细胞丰度情况。I 在肿瘤和背景中广泛注释内的NK、DC、B、T和巨噬细胞子集的相对比例,是在CD235富集范围内计算得出的。B 层面图展示了“STAB1基因特征”在公开可用的人类胎儿肺图谱中所识别的髓系细胞和祖细胞群体中的表达水平。
2025-08-14 12:00:35
939
原创 IF 4.8+ 空间转录组学揭示肺腺癌微环境中的区域异质性和亚克隆动态变化
背景与目的:肺腺癌具有较高的发病率和死亡率。方法:利用单细胞转录组分析获得的细胞类型特异性标记和空间转录组学数据,我们进行了细胞去卷积、评估组织偏好、构建轨迹以及分析点与点之间的相互作用,以创建肺腺癌的全面细胞图谱。结果:我们对来自单细胞转录组学的125,203个单细胞进行了无监督降维聚类,并利用这些数据对单独分析的空间转录组学样本中的3990个点的细胞组成进行了去卷积。伪时间分析确定了与肿瘤紧密相关的成纤维细胞区域,其邻近的肿瘤区域表现出强烈的上皮间质转化和肿瘤迁移特征,定义为肿瘤侵袭的方向。
2025-08-13 15:24:54
1146
原创 IF 48.5+ 肺肿瘤免疫微环境的单细胞空间图谱
我们的数据集为非小细胞肺癌研究界提供了宝贵的资源,并展示了单细胞分析中空间分辨率的实用性。经典单核细胞、中间单核细胞、巨噬细胞、自然杀伤细胞、非经典单核细胞、细胞毒性T细胞、辅助性T细胞。分段图像显示在鳞状细胞型占主导地位的肺腺癌中,癌细胞与Tc细胞之间的相互作用在鳞状细胞型与实性细胞型之间有所不同。描绘了从416名肺腺癌患者获取的多路复用图像的原理图,包括单细胞表型分析、生存分析以及临床结果的机器学习预测。e,使用临床变量、细胞频率、谱系标记和“所有标记”模型对I期LUAD患者的临床进展预测的准确性。
2025-08-12 19:17:18
1018
原创 IF 12+ 小细胞肺癌的空间转录组全谱分析揭示了肿瘤内分子和亚型异质性
该分析揭示了肿瘤内多区域异质性,其特征在于空间定位的组织学区域内存在不同的分子特征、生物学功能、免疫特征和分子亚型。本研究介绍了一项初步的以肿瘤为中心、区域靶向的空间转录组资源,揭示了小细胞肺癌肿瘤内部此前未被探索的空间异质性。B、C)箱形图展示了通过CIBERSORT、TIMER和MCPCOUNTER算法估算出的CD8+T细胞在h-ITH、m-ITH和l-ITH 品型中的浸润丰度。G) 通过ClueGO得出的网络图,展示了h-ITH表型、m-ITH表型和l-ITH表型中显著增强的生物学过程。
2025-08-11 17:34:06
1051
原创 IF 33.3+ 通过多区域单细胞测序解析肺腺癌的空间和细胞结构
在此,我们对来自5例早期LUAD和14个来自肿瘤的具有明确空间邻近性的多区域正常肺组织的186,916个细胞进行了单细胞RNA测序。与肿瘤邻近的正常组织中调节性T细胞表型增加,而细胞毒性CD8+T细胞、抗原呈递巨噬细胞和炎症树突状细胞的特征和比例则减少。D、基于计算的欧几里得距离使用转录组特征对空间样本中的3个代表性上皮细胞子集之间的层次关系进行展示,以及相应量化空间样本之间相似度水平的热图。M 展示了cDC2 C2细胞在总cDC2细胞中的比例以及在LUAD和空间正常肺组织中的分布情况的箱线图。
2025-08-07 14:54:21
740
原创 IF 48.5+ 过度活跃的成纤维细胞通过ADAMTS4损害肺功能
一种针对损伤反应性肺成纤维细胞的细胞外基质蛋白酶活性的治疗药物,可能为严重呼吸道感染后保持肺功能和改善临床结果提供一种有前景的方法。a、b. 来自scGEX数据的表达Col1a2/COL1A2的小鼠和人类间充质细胞的Itga5/ITGA5和Cd9/CD9特征图。c. 热图展示了相对于未处理细胞的log2-transformed后的基因表达变化,该变化是通过 ∆∆Ct 确定的。d. 与感染前和感染后3天内分选的细胞中的大量CD45+细胞相比,Adamts4基因表达的倍数变化。
2025-08-06 13:50:45
949
原创 IF 29+ 癌细胞状态在不同肿瘤类型中反复出现,并与肿瘤微环境形成特定的相互作用
在此,我们对15种癌症类型的单细胞RNA测序进行了泛癌分析,并确定了一个基因模块目录,其表达定义了包括“应激”、“干扰素反应”、“上皮-间质转化”、“金属反应”、“基底”和“纤毛”在内的反复出现的癌细胞状态。a-c 每个模块在每个肿瘤样本的恶性细胞中、正常样本的上皮细胞中以及来自正常样本与肿瘤样本配对样本的恶性细胞和上皮细胞中的显著性热图。e 硬皮瘤、腺体瘤、pEMt和干扰素反应模块在正常样本和肿瘤样本中的表达频率的箱形图。a 对于所指的十例患者肿瘤的H&E图像,将St点的位置以不同的颜色标注出来。
2025-08-05 11:10:59
646
原创 IF 48.5+ 单细胞转录组分析揭示小细胞肺癌的肿瘤异质性
研究结果表明,人类小细胞肺癌存在显著的异质性,且在单细胞分辨率下癌细胞与肿瘤微环境之间存在密切的相互作用,从而为更好地理解SCLC的生物学特性以及开发新的SCLC治疗方法奠定了基础。c、d 饼状图展示了来自CCLE中的50个小细胞肺癌细胞系以及乔治等人所描述的81个小细胞肺癌肿瘤样本中不同免疫特征的比例。b 对SCLC-P2中恶性细胞的UMAP图显示了由细胞起源划分的原发性和复发性肿瘤中的特定簇。a 对来自九名小细胞肺癌患者中的恶性细胞进行的UMAP图分析揭示了肿瘤特异性的簇。
2025-08-04 11:13:39
1088
原创 肺腺癌上皮细胞状态及可塑性图谱
与远离LUAD的正常组织相比,靠近LUAD的正常组织中调节性T细胞表型增加,而细胞毒性CD8+T细胞、抗原呈递巨噬细胞和炎症树突状细胞的特征和比例则减少。C-F、代表性的环形图展示了患者2、3、4和5的每个LUAD与所选匹配的空间正常肺样本之间免疫检查点介导的L-R对的详细情况。B、使用皮尔逊相关系数绘制的散点图,展示了NL、AAH和LUAD样本中CD24与EPCAM和PRF1的表达水平之间的关系。B、热图展示了预测的基于配体-受体的相互作用在各个LUAD与与其对应的空间分布的正常肺组织之间的重叠情况。
2025-08-01 11:50:38
1113
原创 48分肺腺癌上皮细胞状态及可塑性图谱
与远离LUAD的正常组织相比,靠近LUAD的正常组织中调节性T细胞表型增加,而细胞毒性CD8+T细胞、抗原呈递巨噬细胞和炎症树突状细胞的特征和比例则减少。C-F、代表性的环形图展示了患者2、3、4和5的每个LUAD与所选匹配的空间正常肺样本之间免疫检查点介导的L-R对的详细情况。B、使用皮尔逊相关系数绘制的散点图,展示了NL、AAH和LUAD样本中CD24与EPCAM和PRF1的表达水平之间的关系。B、热图展示了预测的基于配体-受体的相互作用在各个LUAD与与其对应的空间分布的正常肺组织之间的重叠情况。
2025-08-01 11:50:38
721
原创 单细胞图谱揭示了抗PD-1治疗的非小细胞肺癌中的免疫异质性
T细胞克隆扩增分析揭示了非MPR患者的异质性,表现为与T细胞耗竭相关的细胞和CCR8+调节性T细胞的扩增程度不同。我们的研究剖析了NSCLC患者对化疗免疫治疗的TIME异质性,为NSCLC的管理提供了新的见解。(B)使用NMF包计算从排名2到排名10的共轭相关系数,并结合NMF聚类的共识图,不同排名下的共识热图显示了每个患者连接矩阵的平均值,代表相似性度量,以及每个患者的平均连接情况。(I)条形图展示了与Tex相关的细胞和与Tex扩展的终末型细胞亚型相对应的突变相关新抗原特异性及病毒特异性T细胞的比例。
2025-07-31 12:48:13
1017
原创 42分单细胞图谱揭示了抗PD-1治疗的非小细胞肺癌中的免疫异质性
抗PD-(L)1治疗已成为非小细胞肺癌的标准疗法,但患者对相同治疗方案的反应存在差异。肿瘤免疫微环境与免疫治疗反应相关,但其异质性导致的治疗结果差异尚未得到充分研究。我们应用单细胞RNA和TCR测序技术,对234名接受新辅助化疗免疫治疗后的NSCLC患者的手术肿瘤样本进行了分析。分析结果显示存在五种不同的TIME亚型,其主要病理反应率各不相同。MPR患者体内FGFBP2+NK/NK样T细胞、记忆B细胞或效应T细胞水平升高,而非MPR患者体内CCR8+调节性T细胞水平较高。T细胞克隆扩增分析揭示了非MPR患者
2025-07-31 12:48:13
1057
原创 单细胞RNA测序揭示了肺腺癌中不同的肿瘤微环境模式
我们的分析揭示了异质性的癌细胞转录组,反映了组织学分级和致癌通路的活性,以及两种截然不同的微环境模式。相比之下,惰性的N³MC微环境则以正常样肌成纤维细胞、非炎性单核细胞衍生巨噬细胞、自然杀伤细胞、髓样树突状细胞和常规 T细胞为特征,与良好的预后相关。F 组织学亚型的分布,(G)正常上皮细胞类型基因签名的平均模块得分,以及(H)按主成分1(PC1)排序的肿瘤上皮细胞的平均通路活性得分。E 基于选定的微环境细胞簇和肿瘤细胞特征的标记基因的ssGSEA富集分数的相关性。
2025-07-30 12:57:12
1031
原创 7+ 单细胞RNA测序揭示了肺腺癌中不同的肿瘤微环境模式
我们的分析揭示了异质性的癌细胞转录组,反映了组织学分级和致癌通路的活性,以及两种截然不同的微环境模式。相比之下,惰性的N³MC微环境则以正常样肌成纤维细胞、非炎性单核细胞衍生巨噬细胞、自然杀伤细胞、髓样树突状细胞和常规 T细胞为特征,与良好的预后相关。F 组织学亚型的分布,(G)正常上皮细胞类型基因签名的平均模块得分,以及(H)按主成分1(PC1)排序的肿瘤上皮细胞的平均通路活性得分。E 基于选定的微环境细胞簇和肿瘤细胞特征的标记基因的ssGSEA富集分数的相关性。
2025-07-30 12:57:12
1195
原创 单细胞 RNA 测序揭示了人类肺癌的治疗诱导进化
在底部左象限中显示了仅在病理损伤中独有的特征,包括纤溶酶原激活途径的上调(5)、间隙连接蛋白的表达(6)、肿瘤抑制基因的丢失(7)、促炎症趋化因子的表达(8)、Treg细胞群体的增加(9)以及色氨酸代谢特征的增加表达(10)。(B和C)通过scRNA-seq确定的每个患者样本中的癌细胞突变图谱,分别以二值化热图的形式展示在驱动基因(B)和COMSIC一级基因(C)上。(E和F)TN、RD和PD肿瘤组织切片中SUSD2(E)和CTNNB1(F)的代表性免疫组化图像,展示了在RD时间点的表达增加。
2025-07-29 16:14:46
967
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅