ML 46. 机器学习之利用SHAP解释模型特征变量的重要性
简 介在许多应用中,理解一个模型为什么会做出某种预测是至关重要的。然而,对于大型现代数据集,最好的准确性通常是通过复杂的模型来实现的,即使专家也很难解释,比如集成或深度学习模型。这造成了准确性和可解释性之间的紧张关系。作为回应,最近提出了各种方法来帮助用户解释复杂模型的预测。在这里,我们提出了一个统一的框架来解释预测,即SHAP (SHapley Additive exPlanations),它...
肿瘤克隆进化生信分析
软件下载
SCI文章撰写技巧
SCI 文章绘图
临床预测模型构建统计学分析方法
基因组分析
RNA数据分析
单细胞系列
scATAC-seq
机器学习
科研神器推荐
文章思路推荐
LaTex写文章
甲基化分析 
