机器学习——SVM

本文章是学习笔记,内容可能会有很多漏洞,如果有不正确的地方欢迎指正
**

一、SVM简述

   1、概念
   在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模 型,通常用来进行模式识别、分类(异常值检测)以及回归分析。

SVM可分为3种。
(1)数据线性可分:硬件隔SVM
(2)数据近似线性可分:软间隔SVM
(3)数据不可线性分:核技巧

二、硬间隔优化问题导出(Hard Margin)

   1、线性模型
      通过对决策边界的平移来决定,保证决策边界在两个刚刚碰到数据集的的中间位置
在这里插入图片描述      1.1、决策边界
         数据集处于不同的位置,在决策边界的上方或者是下方,可分别归为+1类和-1类
在这里插入图片描述   2、线性可分SVM——硬件隔SVM
      2.1、优化问题的导出
         2.1.1、二维空间
在这里插入图片描述         2.1.2、三维空间
在这里插入图片描述         2.1.3、高维空间:超平面
         2.1.4、最大化d(间隔)
在这里插入图片描述直线2: ω x + b = 0 \omega x+b=0 ωx+b=0,而直线1、3都是由直线2平移过来的。

直线1: ω x + b = k \omega x+b=k ωx+b=k 直线3: ω x + b = − k \omega x+b=-k ωx+b=k

对于两边都除以k,就得到 ω k x + b k = 1 \frac{\omega }{k}x+\frac{b}{k}=1 kωx+kb=1 ω k x + b k = − 1 \frac{\omega }{k}x+\frac{b}{k}=-1 kωx+kb=1

对于直线2,两边都乘上 1 k \frac{1}{k} k1 得到 ω k x + b k = 0 \frac{\omega }{k}x+\frac{b}{k}=0 kωx+kb=0
在这里插入图片描述这时我们可以得到三个全新的式子。

直线1: ω x + b = 1 \omega x+b=1 ωx+b=1

直线2: ω x + b = − 1 \omega x+b=-1 ωx+b=1

直线3: ω x + b = 0 \omega x+b=0 ωx+b=0
注意:这里的 ω \omega ω b b b 的与上文中的不相同,这里的是更新过后的 ω \omega ω b b b

上文说过,这里的 x , ω x,\omega xω是向量,所以 x 1 − x 2 x_1-x_2 x1x2 得到的是 x 2 x 1 x_2x_1 x2x1 的那一段向量
之后是向量相乘,注意上面的 c o s θ cos\theta cosθ 可以由公式表示出d,与 ω \omega ω 建立关系 d = 2 ∣ ∣ ω ∣ ∣ d=\frac{2}{||\omega||} d=ω2
m a x max max d 不就是 m i n min min 1 2 ∣ ∣ ω ∣ ∣ 2 \frac{1}{2}||\omega||^2 21ω2 ∣ ∣ ω ∣ ∣ ||\omega|| ω表示为模长,在这个式子中是有根号的,所以这里需要平方一下,以便更好的计算)

问题的转化:最大化间隔 d ⇒ \Rightarrow 最小化 1 2 ∣ ∣ ω ∣ ∣ 2 \frac{1}{2}||\omega||^2 21ω2

在这里插入图片描述分析约束条件,发现不论数据集的分布在直线1上还是直线3下,都成立以下的式子
在这里插入图片描述我们得到SVM优化问题:在这里插入图片描述
   3、例子

ω \omega ω 是法向量,这里设定的是二维平面,所以 ω \omega ω 有两个参数,就有了( ω 1 \omega_1 ω1 ω 2 \omega_2 ω2
在这里插入图片描述在这里插入图片描述
在这里插入图片描述接下来进行化简,改变了约束条件
在这里插入图片描述最后解出 ω 1 \omega_1 ω1 ω 2 \omega_2 ω2 和 b
在这里插入图片描述   4、优化问题求解
      4.1、拉格朗日数乘法**
            拉氏乘数法主要用来求解带约束条件下的极值

            例子
在这里插入图片描述             (1)构造拉氏函数
在这里插入图片描述
             (2)分别求导数
在这里插入图片描述在这里插入图片描述             (3)总结拉氏函数
                 注意:在给出的约束条件中,s.t 有几个约束,就可以有几个参数(系数)
在这里插入图片描述             (4)SVM优化问题的拉氏函数
                 因为 x , ω x,\omega x,ω都是向量,所以有许多的约束条件,在这里我们将其写成连加的形式。
在这里插入图片描述

      4.2、原问题与拉格朗对偶问题
            4.2.1、原问题
在这里插入图片描述在这里插入图片描述            4.2.2、对偶问题

                     先对拉氏函数求最小值,对参数 ω \omega ω求最小值(表示下确界的意思,就是无限的接近,有可能取的到,有可能取不到),在对拉氏函数求最大值(对 α , β \alpha,\beta α,β求最大值)

            4.2.3、KKT条件
             (1)定理1
                如果 ω \omega ω 是原问题的最优解,而 α , β \alpha,\beta α,β 是对偶问题的最优解。 那么就有 f ( ω ) ≥ θ ( α , β ) f(\omega) \geq \theta(\alpha,\beta) f(ω)θ(α,β)
                证明
                  先最小化原问题的最优解(意味着,随便带入一个 ω \omega ω 都比他大)在这里插入图片描述根据上文提到 h ( ω ) = 0 h(\omega)=0 h(ω)=0 g ( ω ) ⩽ 0 g(\omega)\leqslant0 g(ω)0的条件,得到

在这里插入图片描述             (2)定理2:原问题与对偶问题之间的间距
在这里插入图片描述             (3)强对偶定理

在这里插入图片描述拉氏函数的最小值,随便带入一个值都比它大
在这里插入图片描述在这里插入图片描述

三、参考

https://www.bilibili.com/video/BV1A4411y7qK?from=search&seid=11601349198549504545

本文章还未更新完毕未来会继续更新

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值