蓝桥杯 整数小拼接

【问题描述】
给定义个长度为 n 的数组 A1, A2, · · · , An。你可以从中选出两个数 Ai 和 Aj (i 不等于 j),然后将 Ai 和 Aj 一前一后拼成一个新的整数。
例如 12 和 345 可以拼成 12345 或 34512 。
注意交换 Ai 和 Aj 的顺序总是被视为 2 种拼法,即便是 Ai = Aj 时。
请你计算有多少种拼法满足拼出的整数小于等于 K。
【输入格式】
第一行包含 2 个整数 n 和 K。
第二行包含 n 个整数 A1, A2, · · · , An。
【输出格式】
一个整数代表答案。
【样例输入】
4 33
1 2 3 4
【样例输出】
8
【评测用例规模与约定】
对于 30% 的评测用例,1 ≤ N ≤ 1000, 1 ≤ K ≤ 108, 1 ≤ Ai ≤ 104。
对于所有评测用例,1 ≤ N ≤ 100000,1 ≤ K ≤ 1010,1 ≤ Ai ≤ 109。

思路:

将原序列排序,枚举每一个 $A_i$ ,二分找出能和它配对的 $A_j$ ,时间复杂度为 O(n \log n)O(nlogn) 。

拼接两个整数可以用 log10(x) + 1 计算整数 x 的位。

注意:数据卡了long long ,记得用unsigned long long。

AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>

using namespace std;

typedef unsigned long long ll;
const int N = 100010;
ll n, k;
ll g[N];

bool check(ll i, ll mid)
{
	if( g[i] * (ll)pow(10, int(log10(g[mid]) + 1)) + g[mid] <= k )
		return true;
	else
		return false;
}
bool cmp(ll a, ll b)
{
	return a < b;
}
int main()
{
	scanf("%lld %lld", &n, &k);
	for( ll i=1; i<=n; i++ ){
		scanf("%lld", &g[i]);
	}
	sort(g+1, g+n+1, cmp);
	ll ans = 0;
	for( int i=1; i<=n; i++ ){
		ll l = 1, r = n;
		while( l < r ){
			ll mid = l + r + 1>> 1;
			if( check(i, mid) )
				l = mid;
			else
				r = mid - 1;
		}
		if( i <= l ) ans += l - 1;
		if( i > l && check(i, l) ) ans += l;
	}
	printf("%lld\n", ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值