【问题描述】
给定义个长度为 n 的数组 A1, A2, · · · , An。你可以从中选出两个数 Ai 和 Aj (i 不等于 j),然后将 Ai 和 Aj 一前一后拼成一个新的整数。
例如 12 和 345 可以拼成 12345 或 34512 。
注意交换 Ai 和 Aj 的顺序总是被视为 2 种拼法,即便是 Ai = Aj 时。
请你计算有多少种拼法满足拼出的整数小于等于 K。
【输入格式】
第一行包含 2 个整数 n 和 K。
第二行包含 n 个整数 A1, A2, · · · , An。
【输出格式】
一个整数代表答案。
【样例输入】
4 33
1 2 3 4
【样例输出】
8
【评测用例规模与约定】
对于 30% 的评测用例,1 ≤ N ≤ 1000, 1 ≤ K ≤ 108, 1 ≤ Ai ≤ 104。
对于所有评测用例,1 ≤ N ≤ 100000,1 ≤ K ≤ 1010,1 ≤ Ai ≤ 109。
思路:
将原序列排序,枚举每一个 $A_i$ ,二分找出能和它配对的 $A_j$ ,时间复杂度为 O(n \log n)O(nlogn) 。
拼接两个整数可以用 log10(x) + 1
计算整数 x 的位。
注意:数据卡了long long ,记得用unsigned long long。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef unsigned long long ll;
const int N = 100010;
ll n, k;
ll g[N];
bool check(ll i, ll mid)
{
if( g[i] * (ll)pow(10, int(log10(g[mid]) + 1)) + g[mid] <= k )
return true;
else
return false;
}
bool cmp(ll a, ll b)
{
return a < b;
}
int main()
{
scanf("%lld %lld", &n, &k);
for( ll i=1; i<=n; i++ ){
scanf("%lld", &g[i]);
}
sort(g+1, g+n+1, cmp);
ll ans = 0;
for( int i=1; i<=n; i++ ){
ll l = 1, r = n;
while( l < r ){
ll mid = l + r + 1>> 1;
if( check(i, mid) )
l = mid;
else
r = mid - 1;
}
if( i <= l ) ans += l - 1;
if( i > l && check(i, l) ) ans += l;
}
printf("%lld\n", ans);
return 0;
}