整数小拼接--二分法

原题链接:蓝桥杯2020年第十一届省赛真题-整数小拼接 - C语言网 (dotcpp.com)

题目描述

给定一个长度为 n 的数组 A_{1},A_{2},\cdots ,A_{n} 。你可以从中选出两个数 A_{i},A_{j} (i\neq j) ,然后将 A_{i} 和 A_{j} 一前一后拼成一个新的整数。例如 12 和 345 可以拼成 12345 或 34512 。注意交换 A_{i} 和 A_{j} 的顺序被视为 2 种拼法,即便是 A_{i}=A_{j} 。

请你计算有多少种拼法满足拼出的整数小于等于 K 。

输入格式

第一行包含 2 个整数 n 和 K 。 第二行包含 n 个整数 A_{1},A_{2},\cdots ,A_{n} 。

输出格式

一个整数代表答案。

样例输入

4 33
1 2 3 4

样例输出

8

第一种解法:暴力枚举 30pts

使用两层循环迭代所有可能的组合,并判断连在一起是否小于 K 。

可以估计出算法的时间复杂度为 O(n^{2}) ,也就是只能通过30%的用例,得分 30 pts 。 

#include <bits/stdc++.h>
using namespace std;
const int MAX_N = 100100;
int n;
long long k, a[MAX_N], ans;
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    cin >> n >> k;
    for (int i = 1; i <= n; ++i) {
        cin >> a[i];
    }
    for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= n; ++j) {
            if (i == j) {
                continue;
            }
            if (a[i] * (long long)pow(10, int(log10(a[j]) + 1)) + a[j] <= k) {
                ans ++;
            }
        }
    }
    cout << ans << endl;
    return 0;
}

第二种解法:二分法 100pts

即首先将原数组先排序,然后用一层循环枚举每一个 A_{i} ,然后利用二分查找,找出能够满足条件的 A_{j} ,估计时间复杂度为 O(nlogn) 。

拼接两个整数时,可以使用 log_{10}(x)+1 来计算整数 X 的位数。

二分查找可以自己写一个,也可以选择直接用C++函数库里的 upper\_bound

注意:不要忘记开 longlong ,因为拼接后的数可以很大。

#include <bits/stdc++.h>
using namespace std;
const int MAX_N = 100100;
int n;
long long k, a[MAX_N], ans;
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    cin >> n >> k;
    for (int i = 1; i <= n; ++i) {
        cin >> a[i];
    }
    sort(a + 1, a + n + 1);
    for (int i = 1; i <= n; ++i) {
        if (a[i] > k % (long long)pow(10, int(log10(a[i]) + 1))) {
            ans += upper_bound(a + i + 1, a + n + 1, k / (long long)pow(10, int(log10(a[i]) + 1)) - 1) - 1 - a - i;
            ans += upper_bound(a + 1, a + i, k / (long long)pow(10, int(log10(a[i]) + 1)) - 1) - 1 - a;
        } else {
            ans += upper_bound(a + i + 1, a + n + 1, k / (long long)pow(10, int(log10(a[i]) + 1))) - 1 - a - i;
            ans += upper_bound(a + 1, a + i, k / (long long)pow(10, int(log10(a[i]) + 1))) - 1 - a;
        }
    }
    cout << ans << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PL_涵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值