K-均值聚类(K-means clustering)是一种无监督学习方法,用于将数据点分组成不同的簇。其基本思想是将数据点归类到K个簇中,使得每个簇内的数据点相似度高,不同簇之间的数据点相似度低。
算法流程如下:
- 随机选择K个初始的聚类中心点。
- 计算每个数据点到这K个聚类中心点的距离,将其归类到距离最近的簇中。
- 重新计算每个簇的聚类中心点。
- 重复步骤2-3,直到聚类中心点不再改变,或者达到最大迭代次数。
K-均值聚类算法的优点包括:
- 算法简单容易实现,计算速度较快。
- 适用于大规模数据集,效果较好且稳定。
K-均值聚类算法的缺点包括:
- 对于数据分布较为稀疏或者噪声较大的数据集,效果不佳。
- 需要预先设定簇的数量K,而且结果对于初始点的选择较为敏感。
- 对于非球形的簇结构无法有效分类。
因此,在实际应用中,需要根据实际问题选择合适的算法。同时,也可以结合其他算法进行处理,如使用层次聚类等算法。
K-均值聚类算法是一种常见的无监督学习方法,主要用于将数据样本按照相似度分成不同的类别。下面是一个K-均值聚类算法的Python代码示例:
import numpy as np
class KMeans:
def __init__(self, k, max_iter=100):
self.k = k
self.max_iter = max_iter
def fit(self, X):
n_samples = X.