讲解机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类(K-means clustering)是一种无监督学习方法,用于将数据点分组成不同的簇。其基本思想是将数据点归类到K个簇中,使得每个簇内的数据点相似度高,不同簇之间的数据点相似度低。

算法流程如下:

  1. 随机选择K个初始的聚类中心点。
  2. 计算每个数据点到这K个聚类中心点的距离,将其归类到距离最近的簇中。
  3. 重新计算每个簇的聚类中心点。
  4. 重复步骤2-3,直到聚类中心点不再改变,或者达到最大迭代次数。

K-均值聚类算法的优点包括:

  1. 算法简单容易实现,计算速度较快。
  2. 适用于大规模数据集,效果较好且稳定。

K-均值聚类算法的缺点包括:

  1. 对于数据分布较为稀疏或者噪声较大的数据集,效果不佳。
  2. 需要预先设定簇的数量K,而且结果对于初始点的选择较为敏感。
  3. 对于非球形的簇结构无法有效分类。

因此,在实际应用中,需要根据实际问题选择合适的算法。同时,也可以结合其他算法进行处理,如使用层次聚类等算法。

K-均值聚类算法是一种常见的无监督学习方法,主要用于将数据样本按照相似度分成不同的类别。下面是一个K-均值聚类算法的Python代码示例:

import numpy as np

class KMeans:
    def __init__(self, k, max_iter=100):
        self.k = k
        self.max_iter = max_iter
        
    def fit(self, X):
        n_samples = X.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ustiniano

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值