N皇后
Description
在一张N∗N的国际象棋棋盘上,放置N个皇后,使得所有皇后都无法互相直接攻击得到,(皇后可以直接攻击到她所在的横行,竖列,斜方向上的棋子),现在输入一个整数N,表示在N∗N的棋盘上放N个皇后,请输出共有多少种使得所有皇后都无法互相直接攻击得到的方案数。 例如下面这样的摆法,是4皇后的一个解 (1代表有皇后,0代表没有)
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0
Input
一个整数N
Output
能使得在N∗N的国际象棋棋盘上放置N个皇后,并且所有皇后都无法互相直接攻击得到的方案数
Sample Input
样例输入1
4
样例输入2
8
Sample Output
样例输出1
2
样例输出2
92
More Info
1<=N<=13
采用方法:dfs,回溯
方案描述:
递归来遍历行,在具体的一次递归中,循环来遍历列。
#include<stdio.h>
bool vis[13]={0};//在第i行中对某列进行标记
bool d1[26]={0};//对皇后位置的45°斜线上的位置进行标记
bool d2[26]={0};//对皇后位置的135°斜线上的位置进行标记
int ans=0;
int N;
void dfs(int n)
{
int c;
for(c=0;c<N;c++)
{
if((vis[c]==0&&d1[n-c+N-1]==0&&d2[n+c]==0))//判断该位置是否可行
{
vis[c]=1;//标记
d1[n-c+N-1]=1;
d2[n+c]=1;
if(n<N-1)
dfs(n+1);
else
{
ans++;//方案数加一
}
vis[c]=0;//回溯
d1[n-c+N-1]=0;
d2[n+c]=0;
}
}
}
int main()
{
scanf("%d",&N);
dfs(0);
printf("%d ",ans);
return 0;
}