马踏棋盘问题-回溯法

问题描述:

在m行n列的棋盘上有一个中国象棋的马,马走日字且只能向右走。请找到可行路径的条数,使得马从棋盘的左下角(1,1)走到右上角(m,n)。

算法思路:由于马只能向右走,所以只有四个方向,用一个数组a存放马可以走的方向,并用step数组记录马走的路径,马每走一步后就判断当前步骤是否合法(test函数),不合法就回退到上一步,然后在走另一个方向,如果合法,就执行下一步(next函数),以此类推,不断回溯,当走到棋盘的右上角时,算法结束,从而找到一条合适的路径,并记录路径的条数。

算法输入:马走的方向i(0~3),棋盘大小m行n列,当前位置坐标x,y,存放路径数组step,存放马走的方向的数组a,路径条数num_methods。

算法输出:数组step存放的路径和路径条数num_methods。

代码示例:

#include <iostream>
#include <string.h>
#include <vector>
using namespace std;

bool test(int i, int m, int n, int x, int y)
{
    switch (i)
    {
    case 0:
    {
        if (x <= n && y <= m)
            break;
    }
    case 1:
    {
        if (x <= n && y <= m)
            break;
    }
    case 2:
    {
        if (x <= n && y <= m)
            break;
    }
    case 3:
    {
        if (x <= n && y <= m)
            break;
    }
    }
    if (x > n || y > m || x < 1 || y < 1) return true;
    return false;
}

void next(int i, int m, int n, int x, int y, vector<int> step, string a[], int& num_methods);

void fun(int m, int n, int x, int y, vector<int> step, string a[], int& num_methods)
{
    for (int i = 0; i < 4; i++)
    {
        if (test(i, m, n, x, y))
        {
            continue;
        }
        else
        {
            next(i, m, n, x, y, step, a, num_methods);
        }
    }
}

void next(int i, int m, int n, int x, int y, vector<int> step, string a[], int& num_methods)
{
    switch (i)
    {
    case 0:
    {
        x = x+1;
        y = y+2;
        break;
    }

    case 1:
    {
        x =x+ 2;
        y =y+ 1;
        break;
    }
    case 2:
    {
        x =x+2;
        y =y-1;
        break;
    }
    case 3:
    {
        x = x+1;
        y = y-2;
        break;
    }
    }
    step.push_back(i);
    if (x == n && y == m)
    {
        cout << "一种方法:" << endl;
        for (int j = 0; j < step.size(); j++)
        {
            cout<<a[step[j]]<<endl;
        }
        cout << "方法结束:" << endl;
        num_methods++;
        return;
    }
    fun(m, n, x, y, step, a, num_methods);
}


int main()
{
    int m,n,num_methods = 0;
    cout<<"请输入棋盘的规模:"<<endl;
    cin>>m>>n;
    string a[] = { "x+1,y+2","x+2,y+1","x+2,y-1","x+1,y-2" };
    vector<int> step;
    fun(m, n, 1, 1, step, a, num_methods);
    cout<<endl;
    cout << "方法总数" << num_methods << endl;
    return 0;
}


运行结果:

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值