前言

一 、存贮模型
1.问题背景(不允许缺货)

2.问题分析
由周期长度所决定日均费用


3.模型假设
先不做拓展,从最简单的情况出发,后续可以讨论生产时间(每日生产个数上限),需求量变化。

4.模型建立

5.模型求解

6.模型解释

7.模型应用
之前为离散,而此时视为连续,故计算结果不一致

8.允许缺货的模型建立
缺货补全,用于补全的产品视作直接被销售,不会贮存


但是
Q
′
Q^{'}
Q′未考虑补全缺货的生产量,所以即便
Q
′
<
Q
Q^{'}<Q
Q′<Q,仍然有实际意义

二、森林救火
1.问题背景

2.问题分析

3. 模型假设
火势蔓延速度表示
d
B
d
t
\frac{dB}{dt}
dtdB的变化率,与
t
t
t相关,通过积分可以求出损失面积

4.模型建立


5.模型求解

6.结果解释

7.模型应用与评注

三、倾倒的啤酒杯
1.问题背景

2.问题分析与模型假设


3.模型一建立(不考虑杯底)
重心的合成



4.模型一结果分析



5.模型二建立(考虑杯底)


6.小结与批注

四、铅球掷远
1.问题背景

2.问题分析

3.模型一建立(不考虑铅球出手的高度)


4.模型二的建立(考虑出手高度)


5.敏感性分析


6.小结与批注

五、不买贵的只买对的
1.问题背景


2.效用函数介绍



等值线




3.模型建立

4.模型求解
寻找相切点,视作连续




5.向n类商品的推广

6.模型应用



贪心思想,选择单位金额边界效用最高的商品

7.小结与批注

六、血管分支
1.问题背景

2.模型假设


3.模型建立

4.模型求解

5.模型解释
依照最小能量原则推出的结果,提出合理推论

七、冰山运输
1.问题背景


2.问题分析


融化速率解释:


3.模型假设

4.模型建立
考虑两种费用和水最终的保留情况,求出最后水每立方米的费用,进行比较




离散值,使用枚举法进行比较

5.模型求解

6.结果分析

7.小结与批注

八、影院里的视角和仰角
1.问题背景

2.问题分析




3.模型假设


4.模型建立
标准差的求解涉及了概率统计,分母为
n
−
1
n-1
n−1与无偏估计有关




5.模型求解
微分法难以求解,可以通过离散值的枚举,从中选出最优解





6.小结与批注

本文精选多个数学模型案例,包括存贮模型、森林救火、倾倒的啤酒杯等问题的分析与解决过程。每个案例均详细介绍了问题背景、模型假设、模型建立及求解方法等内容。
3216

被折叠的 条评论
为什么被折叠?



