- 博客(11)
- 收藏
- 关注
原创 完全卸载Visual Studio2019
完全卸载Visual Studio2019VS不知道出了什么bug,卸载不干净,保留了原来的配置文件官方链接:https://docs.microsoft.com/zh-cn/visualstudio/install/remove-visual-studio?view=vs-2019删除所有已安装实例的安装文件和产品信息。...
2021-09-15 08:51:25 2358
原创 C#预处理指令的作用及理解
C#预处理指令的作用及理解在程序调试和运行上有重要的作用。比如预处理器指令可以禁止编译器编译代码的某一部分,如果计划发布两个版本的代码,即基本版本和有更多功能的企业版本,就可以使用这些预处理器指令来控制。在编译软件的基本版本时,使用预处理器指令还可以禁止编译器编译于额外功能相关的代码。另外,在编写提供调试信息的代码时,也可以使用预处理器指令进行控制。总的来说和普通的控制语句(if等)功能类似,方便在于预处理器指令包含的未执行部分是不需要编译的。#define和#undef用法:#defi
2021-07-15 16:31:00 1889
原创 vscode C#的环境配置与调试
vscode C#的环境配置与调试暑期学习C#,环境配置花了我一段时间,一直找不出问题,好在最终解决了,下面是我的配置过程以及遇到的问题,以供参考。第一步.NET CORE下载检测是否安装成功:打开cmd,快捷键:win+R在命令行输入dotnet --version,可查看已经安装的版本第二步给vscode安装扩展直接在应用商店搜索C#,待安装完成即可第三步新建项目文件夹,用vscode打开,打开终端,输入命令dotnet new console运行命令之后,项目文件夹会生
2021-07-12 17:14:01 4374 4
转载 字符串与编码
字符串与编码转载链接:字符串与编码字符编码全世界有上百种语言,日本把日文编到Shift_JIS里,韩国把韩文编到Euc-kr里,各国有各国的标准,就会不可避免地出现冲突,结果就是,在多语言混合的文本中,显示出来会有乱码。因此,Unicode字符集应运而生。Unicode把所有语言都统一到一套编码里,这样就不会再有乱码问题了。ASCII编码和Unicode编码的区别:ASCII编码是1个字节,而Unicode编码通常是2个字节。用Unicode编码比ASCII编码需要多一倍的存储空间,在存储和传输上
2021-02-26 20:30:11 169
原创 第六章 差分方程与代数方程模型
第六章 差分方程与代数方程模型离散时间点描述研究对象的动态变化。实际问题本身以离散形式出现,建立差分方程模型可解决一些实际问题,如研究对象随离散时间的变化规律。而不考虑时间因素做静态问题处理时,可以建立代数方程模型。两个模型求解过程(矩阵、向量的数学表达形式)类似,结合学习。基础知识:差分方程的类型、求解及稳定性1.贷款问题 |等额本息贷款、等额本金贷款等额本息贷款等额本息贷款:每月归还的本息金额相同建模每月还款金额为a,贷款总额为x0,月利率为r,第k月还款后尚欠金额为xk,贷款期限为n
2021-02-22 18:42:11 1893
原创 第五章 微分方程模型
第五章 微分方程模型微分方程:包含连续变化的自变量、未知函数及其变化率的方程式动态过程的变化规律一般用微分方程的动态模型建立,主要目的是研究某种意义下稳定状态的特征1.人口增长 logistic模型理想状况下,不受资源和环境的限制,此时增长率r为常数,微分方程的满足条件dtdt=rx,x(0)=x0{dt\over dt}=rx,x(0)=x_0dtdt=rx,x(0)=x0考虑资源和环境的限制等因素的阻滞作用,logistics模型增长率r是随x变化的函数r(x)=a+bx,引入两个
2021-02-11 15:41:24 1171
原创 第四章 数学规划模型
第四章 数学规划模型在高中就已经初步了解过线性规划,在对决策变量的取值范围有范围限制条件下求目标值。实际问题中通常有多个决策变量,可行域复杂;目标函数也是多元函数,模型通常表示为min(max) z=f(x)s.t. gi(x)≤0(也可以为等式),i=1,2,⋅⋅⋅⋅mmin(max)\ z=f(x)\\s.t.\ g_i(x)≤0(也可以为等式),i=1,2,····mmin(max) z=f(x)s.t. gi(x)≤0(也可以为等式),i=1,2
2021-02-03 16:49:32 2957
原创 Lingo 软件的使用 数学建模 司守奎
Lingo 软件的使用 数学建模 司守奎1. Lingo 软件的基本语法1.1集合集合部分的语法sets:集合名称1/成员列表1/:属性1_1,属性1_2,…,属性1_n1;集合名称2/成员列表2/:属性2_1,属性2_2,…,属性2_n2;派生集合名称(集合名称1,集合名称2):属性3_1,…,属性3_n3;endsets例如sets:product/A B/;machine/M N/;week/1…2/;allowed(product,machine,week):x;en
2021-01-30 18:19:22 1575 2
原创 第三章 简单的优化模型
第三章 简单的优化模型本章介绍简单的优化模型,归结为微积分中的函数极值问题,直接用微分法求解。建立优化模型的步骤:做出若干合理简化的假设首先确定优化的目标、寻求决策和决策受到的限制运用数学工具(变量、常数、函数)解决最后运用微分法求出最优决策以下选出几个实例学习1.存贮模型1.1不允许缺货的存贮模型问题:配件厂生产若干种部件,每次生产因更换设备要付生产准备费(与生产数量无关),部件生产大于需求时占用仓库要付贮存费。设计生产计划,确定生产周期,单个周期产量,可使日均
2021-01-27 00:02:12 2750
原创 第二章 初等模型
第二章 初等模型一般用静态、线性、确定性模型描述就能达到建模目的时,基本可以用初等数学的方法来构造和求解模型。本章通过若干实例,运用简单的数学方法来建立模型。本章重点学习:简单数学方法+巧妙设置模型假设+模型构成思路 找到设置参数之间的关系1. 划艇比赛成绩问题:T .A. McMahon根据各种赛艇的比赛成绩发现他们之间有相当一致的差别,认为比赛成绩与桨手数量之间存在一定的联系,于是根据以下思路建立一个模型。(数据表格略)问题分析:首先明确建模的目的:求出桨手n与成绩即时间t的关系
2021-01-19 21:25:57 3165
原创 第一章 数学模型的建立
第一章 建立数学模型1.首先理解什么是数学建模对现实世界的特定对象,根据特定规律,作出简化假设,得到数学结构的过程。重点学习建立数学模型的全过程。2. 建模简单实例2.1包饺子中的数学问题:1 kg面和1 kg可以包100个饺子,那么1 kg面包50个可以包多少馅呢?问题分析:馅与面皮,即物体的表面积与体积。用V和S表示大饺子的体积与表面积;v和s表示小饺子的体积与表面积。模型假设:饺子面皮一样厚,面皮面积满足S=nsS=nsS=ns所有饺子形状相同模型
2021-01-17 20:59:06 2449
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人