【matlab图像处理笔记2】【图像变换】(一)图像的算术运算与几何变换、图像插值算法

前言

本篇文章将介绍和应用图像的算术运算和几何变换,并对插值算法进行说明。比较简单的我就不举例了。

图像的算术运算

图像相加

图像的加法运算是将一幅图像的内容叠加在另一幅图像上,或者给图像的每一个像素加一个常数来改变图像的亮度。主要应用是改变图像亮度和图像叠加。

函数:

Z = imadd(X,Y)

图像差分

主要作用是检测图像的变化和检测运动物体。

函数:

Z = imsubtract(X,Y)

图像乘法

主要作用是掩膜和缩放。

函数:

Z = immultiply(X,Y)

什么是掩膜:

这里写图片描述

可以对图像上一些区域起屏蔽作用。

图像除法

主要作用是矫正成像设备的非线性影响。

函数:

Z = imdivide(X,Y)

Z = X Y Z = \frac{X}{Y} Z=YX

图像的线性组合

函数

Z = imlincomb(A,X,B,Y,C) % Z = A*X+B*Y+C
Z = imlincomb(A,X,C) 	 % Z = A*X+C
Z = imlincomb(A,X,B,Y)	 % Z = A*X+B*Y

图像的几何变换

图像平移

假设图中一点为 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0), 对其水平平移tx个单位,垂直平移ty个单位,那么用矩阵表示应该为:
[ x 1 y 1 1 ] = [ 1 0 t x 0 1 t y 0 0 1 ] [ x 0 y 0 1 ] \begin{bmatrix} x_1\\ y_1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1&0&tx\\ 0&1&ty \\ 0&0&1 \end{bmatrix}\begin{bmatrix} x_0\\ y_0 \\ 1 \end{bmatrix} x1y11 = 100010txty1 x0y01
matlab中并没有提供平移图像的函数,但是可以通过膨胀函数平移图像。

应用示例

close all;clc;clear;
I = imread('example2.jpg');
subplot(1,2,1),imshow(I);title("original 1");

se = translate(strel(1),[50,100]); % 将一个平面结构元素向下移动50,向右边移动100
X = imdilate(I,se); %利用膨胀平移图像
subplot(1,2,2),imshow(X);title("now img");

image-20221015210639716

图片镜像

设图像矩阵为 ( M , N ) (M,N) (M,N)

图像镜像分为垂直镜像和水平镜像。

垂直镜像:
x 1 = M − x 0 y 1 = y 0 \begin{split} & x_1 = M-x_0 \\ & y_1 = y_0 \end{split} x1=Mx0y1=y0
水平镜像:
x 1 = x 0 y 1 = N − y 0 \begin{split} & x_1 = x_0 \\ & y_1 = N-y_0 \end{split} x1=x0y1=Ny0
应用示例

函数

X = flip(I,dim = _)
% dim = 1 水平镜像(翻转列)
% dim = 2 垂直镜像(翻转行)
% dim = 3 翻转第三维,可能是颜色?
close all;clc;clear;
I = imread('example2.jpg');
subplot(2,2,1),imshow(I);title("original");

X_1 = flip(I,1); % 翻转行
X_2 = flip(I,2); % 翻转列
X_3 = flip(I,3); % 翻转第三维
subplot(2,2,2),imshow(X_1);title("水平镜像");
subplot(2,2,3),imshow(X_2);title("垂直镜像");
subplot(2,2,4),imshow(X_3);title("?");

image-20221015213849584

图片转置

( x 0 , y 0 ) (x_0,y_0) (x0,y0)是原图上的点,则转置为:
x 1 = y 0 y 1 = x 0 \begin{split} & x_1 = y_0 \\ & y_1 = x_0 \end{split} x1=y0y1=x0
表示为矩阵形式:
[ x 1 y 1 1 ] = [ 0 1 0 1 0 0 0 0 1 ] [ y 0 x 0 1 ] = [ x 0 y 0 1 ] \begin{bmatrix}x_1&y_1&1\end{bmatrix}=\begin{bmatrix}0&1&0\\1&0&0\\0&0&1\end{bmatrix}\begin{bmatrix}y_0&x_0&1\end{bmatrix} = \begin{bmatrix}x_0&y_0&1\end{bmatrix} [x1y11]= 010100001 [y0x01]=[x0y01]

注意:转置后图像的高度和宽度也会发生变化。

示例

matlab中需要构建转换矩阵,然后用imwarp变换图像。

close all;clc;clear;
I = imread('example2.jpg');
subplot(1,2,1),imshow(I);title("original");

T=affine2d([0 1 0;1 0 0;0 0 1]);%构造空间变换结构T.这里为转置变换矩阵
X=imwarp(I,T);  % 根据位移场变换图像。
subplot(1,2,2),imshow(X);title("now");

image-20221015215618617

图像旋转

设点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)经过旋转 θ \theta θ 角度后,坐标变为 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)

旋转前:
{ x 0 = r c o s θ y 0 = r s i n θ \left\{ \begin{aligned} x_0 = rcos\theta\\ y_0 = rsin\theta\\ \end{aligned} \right. {x0=rcosθy0=rsinθ
旋转后:
{ x 1 = r c o s ( α − θ ) = r c o s α c o s θ + r s i n α s i n θ = x 0 c o s θ + y 0 s i n θ y 1 = r s i n ( α − θ ) = r s i n α c o s θ − r c o s α s i n θ = − x 0 s i n θ + y 0 c o s θ \left\{ \begin{aligned} x_1 = rcos(\alpha-\theta) = rcos\alpha cos\theta + rsin\alpha sin\theta = x_0cos\theta+y_0sin\theta\\ y_1 = rsin(\alpha-\theta) = rsin\alpha cos\theta - rcos\alpha sin\theta = -x_0sin\theta+y_0cos\theta\\ \end{aligned} \right. {x1=rcos(αθ)=rcosαcosθ+rsinαsinθ=x0cosθ+y0sinθy1=rsin(αθ)=rsinαcosθrcosαsinθ=x0sinθ+y0cosθ
矩阵形式:
[ x 1 y 1 1 ] = [ c o s θ s i n θ 0 − s i n θ c o s θ 0 0 0 1 ] [ x 0 y 0 1 ] \begin{bmatrix}x_1\\y_1\\1\end{bmatrix}=\begin{bmatrix}cos\theta&sin\theta&0\\-sin\theta&cos\theta&0\\0&0&1\end{bmatrix}\begin{bmatrix}x_0\\y_0\\1\end{bmatrix} x1y11 = cosθsinθ0sinθcosθ0001 x0y01
对矩阵求逆可得逆变换:
[ x 0 y 0 1 ] = [ c o s θ − s i n θ 0 s i n θ c o s θ 0 0 0 1 ] [ x 1 y 1 1 ] \begin{bmatrix}x_0\\y_0\\1\end{bmatrix}=\begin{bmatrix}cos\theta&-sin\theta&0\\sin\theta&cos\theta&0\\0&0&1\end{bmatrix}\begin{bmatrix}x_1\\y_1\\1\end{bmatrix} x0y01 = cosθsinθ0sinθcosθ0001 x1y11
示例

函数:

X = imrotate(A,angle) 
X = imrotate(A,angle,method)
X = imrotate(A,angle,method,bbox)
  • angle:角度,大于0顺时针旋转,小于0逆时针旋转
  • method:插值方法,method取值为:‘nearest’(默认)最近邻插值、'bilinear’双线性插值、'bicubic’双三次插值(关于插值算法将在下面介绍)
  • bbox:返回图像的大小,取值为’crop’或’loose’。'crop’输出大小和输入图像大小想等,对旋转后的图像进行裁剪;‘loose’(默认)表示使输出图像足够大,包含完整的旋转图像.
close all;clc;clear;
I = imread('example2.jpg');
subplot(2,2,1),imshow(I);title("original");

X_1 = imrotate(I,45);
subplot(2,2,2),imshow(X_1);title("angle 45");
X_2 = imrotate(I,45,'bicubic');
subplot(2,2,3),imshow(X_2);title("angle 45 bicubic");
X_3 = imrotate(I,45,'bicubic','crop');
subplot(2,2,4),imshow(X_3);title("angle 45 bicubic crop");

image-20221016142455456

图像缩放

将放大或者缩小后的图像将其的坐标(长宽)拉伸或者压缩到和原图一样大时,其像素坐标点对应在原图上的位置就是其映射位置。假设图像x轴方向缩放比为 f x f_x fx,y轴方向缩放比为 f y f_y fy ,则原图中的点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)缩放后对应的新位置为:
[ x 1 y 1 1 ] = [ f x 0 0 0 f y 0 0 0 1 ] [ x 0 y 0 1 ] \begin{bmatrix}x_1\\y_1\\1\end{bmatrix}=\begin{bmatrix}f_x&0&0\\0&f_y&0\\0&0&1\end{bmatrix}\begin{bmatrix}x_0\\y_0\\1\end{bmatrix} x1y11 = fx000fy0001 x0y01

注:以下图示来自(三)图像的放大和缩小_淡定的炮仗的博客-CSDN博客_图像缩放原理

img

仔细看一下图就懂了。但是对于图像放大而言,这只是第一步。

观察图像放大的图示,会发现中间空了很多没有值的像素点位。上述图像来源的博客中用python具体实现了一下直接放大的代码,详情请见博客。该博客在最后提到,“放大的图像由于是原图像素直接搬移到放大后的画布上,导致放大后的画布上的一些像素位置没有值(值为0)”。为了解决该问题,需要用到图像插值算法进行补全。关于图像插值算法将在下一节说明。

示例

函数

X = imresize(I,m) % I可以是灰度、RGB、二值图像。m为缩放尺寸,m大于0小于1时为缩小;m大于1时为放大。
X = imresize(I,[mrows,ncols]) % [mrows ncols]为放大后的行和列。当mrows或ncols取值为NaN,函数会根据I的纵横比,结合另一个已知值算出mrows或ncols的值。mrows和ncols不可同时为NaN.
[X,newmap] = imresize(I,map,m) % 对索引图像进行缩放
[...] = imresize(...,method) % ...表示可为之前说过的任意一种方式,method表示选用的插值算法。method值可选择插值方法的类型:'nearest'(默认)最近邻插值、'bilinear'双线性插值、'bicubic'双三次插值;或者选择插值的核函数:'box'Box型核函数、'triangle' 三角型核函数(bilinear相同)、'Cubic'立方体型核函数(bicubic相同)等。
[...] = imresize(...,parameter,value,...) % 通用形式,这里不对该方法进行详细说明。

关于最后那种方法,详细取值表格请见连接:图像处理之图像的几何变换_Hard Coder的博客-CSDN博客_图像几何变换

close all;clc;clear;
I = imread('example2.jpg');
figure();imshow(I);title("original");
X_1 = imresize(I,[NaN,100],'box');
figure();imshow(X_1);title("[mrows ncols],box");
X_2 = imresize(I,0.5);
figure();imshow(X_2);title("m");
[X,map] = rgb2ind(I,16);
[X_3,newmap] = imresize(X,map,1.3);
figure();imshow(X_3,newmap);title("index img");

image-20221016151946702

图像插值算法

参考文章:一篇文章为你讲透双线性插值 - 知乎 (zhihu.com) 不过要注意的是,参考文章中有一些错误。

简单来说,插值指利用已知的点来“猜”未知的点,图像领域插值常用在修改图像尺寸的过程,由旧的图像矩阵中的点计算新图像矩阵中的点并插入,不同的计算过程就是不同的插值算法。

常用的插值算法有三种:

  1. 最近邻(Nearest Interpolation):计算速度最快,效果最差。
  2. 双线性插值(Bilinear Interpolation):双线性插值是用原图像中4(2*2)个点计算新图像中1个点,效果略逊于双三次插值,速度比双三次插值快,较为平衡,在很多框架中属于默认算法。
  3. 双三次插值(Bicubic interpolation):双三次插值是用原图像中16(4*4)个点计算新图像中1个点,效果比较好,但是计算代价过大。

最近邻插值算法

又称邻接插值算法。选取距离插入的像素点最近的一个像素点,用它的像素值代替插入的像素点。

公式:
s r c x = d e s x × ( s r c w / d e s w ) s r c y = d e s y × ( s r c h / d e s h ) \begin{split} & src_x = des_x\times(src_w/des_w) \\ & src_y = des_y\times(src_h/des_h) \end{split} srcx=desx×(srcw/desw)srcy=desy×(srch/desh)
此公式是四舍五入的规则。其中:

  • s r c x src_x srcx:原图像中像素点的x坐标
  • s r c y src_y srcy:原图像中像素点的y坐标
  • d e s x des_x desx:变换后图像的像素点的x坐标
  • d e x y dex_y dexy:变换后图像的像素点的y坐标
  • s r c w src_w srcw:原图像宽度(width)
  • s r c h src_h srch:原图像高度(height)
  • d e s w des_w desw:变换后图像的宽度
  • d e s h des_h desh:变换后图像的高度

有的小伙伴可能就要问了,为什么src在等式左边啊?

实际上这个公式是先有了变换后的图像,然后这个图像中有些像素值缺失的点位。现在要计算这些点位在原图像中离哪个像素点位最近,然后用其替换,所以src在左边。可以多看看参看文章中计算示例。

最近邻法不需要计算只需要寻找原图中对应的点,所以最近邻法速度最快,但是会破坏原图像中像素的渐变关系,原图像中的像素点的值是渐变的,但是在新图像中局部破坏了这种渐变关系

双线性插值算法

单线性插值

(以下图示来自之前提到的参考文章)

已知中P1点和P2点,坐标分别为 ( x 1 , y 1 ) (x1,y1) (x1,y1) ( x 2 , y 2 ) (x2,y2) (x2,y2),要计算 $[x1,x2] $区间内某一位置 x 在直线上的y值。

img

看图就知道了,实际上单线型插值就是建立(线性)函数,然后找x对应的 f ( x ) f(x) f(x)即可。

根据两点求一条直线公式:
y − y 1 x − x 1 = y 2 − y 1 x 2 − x 1 \frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1} xx1yy1=x2x1y2y1
整理:
y = x 2 − x x 2 − x 1 y 1 + x − x 1 x 2 − x 1 y 2 y = \frac{x_2-x}{x_2-x_1}y_1+\frac{x-x_1}{x_2-x_1}y_2 y=x2x1x2xy1+x2x1xx1y2
上述是对于一维(图像)而言,x即像素点位,y为像素值。为了便于后续理解,将y改写为 f ( x ) f(x) f(x) 。右式 f ( x i ) f(x_i) f(xi)前的系数改称为权重。
f ( x ) = x 2 − x x 2 − x 1 f ( x 1 ) + x − x 1 x 2 − x 1 f ( x 2 ) f(x) = \frac{x_2-x}{x_2-x_1}f(x_1)+\frac{x-x_1}{x_2-x_1}f(x_2) f(x)=x2x1x2xf(x1)+x2x1xx1f(x2)
现在将一维图像拓展为二维图像。

双线性插值

已知四个点 Q 11 ( x 1 , y 1 ) , Q 12 ( x 1 , y 2 ) , Q 21 ( x 2 , y 1 ) , Q 22 ( x 2 , y 2 ) Q_{11}(x_1,y_1),Q_{12}(x_1,y_2),Q_{21}(x_2,y_1),Q_{22}(x_2,y_2) Q11(x1,y1),Q12(x1,y2),Q21(x2,y1),Q22(x2,y2)。根据该求点 P ( x , y ) P(x,y) P(x,y) 的像素值。

img

双线性插值是分别在两个方向计算了共3次单线性插值:在x方向求2次单线性插值,获得 R 1 ( x , y 1 ) R1(x, y_1) R1(x,y1) R 2 ( x , y 2 ) R2(x, y_2) R2(x,y2)两个临时点,再在y方向计算1次单线性插值得出 P ( x , y ) P(x, y) P(x,y)

第一步:
f ( R 1 ) = x 2 − x x 2 − x 1 f ( Q 11 ) + x − x 1 x 2 − x 1 f ( Q 21 ) f ( R 2 ) = x 2 − x x 2 − x 1 f ( Q 12 ) + x − x 1 x 2 − x 1 f ( Q 22 ) \begin{split} & f(R_1) = \frac{x_2-x}{x_2-x_1}f(Q_{11})+\frac{x-x_1}{x_2-x_1}f(Q_{21}) \\ & f(R_2) = \frac{x_2-x}{x_2-x_1}f(Q_{12})+\frac{x-x_1}{x_2-x_1}f(Q_{22}) \end{split} f(R1)=x2x1x2xf(Q11)+x2x1xx1f(Q21)f(R2)=x2x1x2xf(Q12)+x2x1xx1f(Q22)

为什么权值计算没有涉及y轴?

因为y轴没变,所以权值仅取决于x轴。在接下来的第二步中也是同样的道理,x轴没变,权值仅取决于y轴。

第二步:
f ( P ) = y 2 − y y 2 − y 1 f ( R 1 ) + y − y 1 y 2 − y 1 f ( R 2 ) f(P) = \frac{y_2-y}{y_2-y_1}f(R_1)+\frac{y-y_1}{y_2-y_1}f(R_2) f(P)=y2y1y2yf(R1)+y2y1yy1f(R2)
先暂时不联立第一步和第二步,我们先想想已知四个点的关系。我们进行插值时,找的四个点应该是靠在一起的,所以有:
x 2 − x 1 = 1 y 2 − y 1 = 1 \begin{split} & x_2-x_1 = 1 \\ & y_2-y_1 = 1 \end{split} x2x1=1y2y1=1
化简

第一步:
f ( R 1 ) = ( x 2 − x ) f ( Q 11 ) + ( x − x 1 ) f ( Q 21 ) f ( R 2 ) = ( x 2 − x ) f ( Q 12 ) + ( x − x 1 ) f ( Q 22 ) \begin{split} & f(R_1) = (x_2-x)f(Q_{11})+{(x-x_1)}f(Q_{21}) \\ & f(R_2) = {(x_2-x)}f(Q_{12})+{(x-x_1)}f(Q_{22}) \end{split} f(R1)=(x2x)f(Q11)+(xx1)f(Q21)f(R2)=(x2x)f(Q12)+(xx1)f(Q22)
第二步:
f ( P ) = ( y 2 − y ) f ( R 1 ) + ( y − y 1 ) f ( R 2 ) f(P) = (y_2-y)f(R_1)+(y-y_1)f(R_2) f(P)=(y2y)f(R1)+(yy1)f(R2)
联立第一步和第二步:
f ( P ) = ( y 2 − y ) f ( R 1 ) + ( y − y 1 ) f ( R 2 ) = ( y 2 − y ) [ ( x 2 − x ) f ( x 1 , y 1 ) + ( x − x 1 ) f ( x 2 , y 1 ) ] + ( y − y 1 ) [ ( x 2 − x ) f ( x 1 , y 2 ) + ( x − x 1 ) f ( x 2 , y 2 ) ] = ( y 2 − y ) ( x 2 − x ) f ( x 1 , y 1 ) + ( y 2 − y ) ( x − x 1 ) f ( x 2 , y 1 ) + ( y − y 1 ) ( x 2 − x ) f ( x 1 , y 2 ) + ( y − y 1 ) ( x − x 1 ) f ( x 2 , y 2 ) = ( y 2 − y ) ( x 2 − x ) f ( Q 11 ) + ( y 2 − y ) ( x − x 1 ) f ( Q 21 ) + ( y − y 1 ) ( x 2 − x ) f ( Q 12 ) + ( y − y 1 ) ( x − x 1 ) f ( Q 22 ) \begin{split} f(P) & = (y_2-y)f(R_1)+(y-y_1)f(R_2) \\ & = (y_2-y)[(x_2-x)f(x_1,y_1)+(x-x_1)f(x_2,y_1)]+(y-y_1)[{(x_2-x)}f(x_1,y_2)+{(x-x_1)}f(x_2,y_2)] \\ & = (y_2-y)(x_2-x)f(x_1,y_1)+(y_2-y)(x-x_1)f(x_2,y_1)+(y-y_1)(x_2-x)f(x_1,y_2)+(y-y_1)(x-x_1)f(x_2,y_2) \\ & = (y_2-y)(x_2-x)f(Q_{11})+(y_2-y)(x-x_1)f(Q_{21})+(y-y_1)(x_2-x)f(Q_{12})+(y-y_1)(x-x_1)f(Q_{22}) \end{split} f(P)=(y2y)f(R1)+(yy1)f(R2)=(y2y)[(x2x)f(x1,y1)+(xx1)f(x2,y1)]+(yy1)[(x2x)f(x1,y2)+(xx1)f(x2,y2)]=(y2y)(x2x)f(x1,y1)+(y2y)(xx1)f(x2,y1)+(yy1)(x2x)f(x1,y2)+(yy1)(xx1)f(x2,y2)=(y2y)(x2x)f(Q11)+(y2y)(xx1)f(Q21)+(yy1)(x2x)f(Q12)+(yy1)(xx1)f(Q22)
总结

双线性插值算法是有缺陷的,比如边界像素点还是存在有的像素只是进行了单线性插值,并不能保证每一个像素都是双线性插值。不过这里暂时不讨论。

双三次插值算法

又称三次卷积插值。它更复杂,不仅考虑了4个邻近点,还考虑了灰度值的变换率。双三次插值算法可以克服最近邻和双线性插值算法的缺陷,计算精度高。但由此也会导致计算量较大。

这里暂时不对双三次插值算法进行详细讨论。

  • 5
    点赞
  • 43
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Twilight Sparkle.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值